Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
12 Jul 2010, 16:53
1
This post received KUDOS
4
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
95% (hard)
Question Stats:
39% (02:36) correct
61% (01:37) wrong based on 255 sessions
Is x > y^2?
(1) x > y+5
(2) x^2-y^2 = 0
Hello,
I was wondering if someone can help with providing a detailed explanation as to how they arrived at correct answer . The explanation on the test (GMAT Club Test m2#19) review is a bit brief. Thanks
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
12 Jul 2010, 18:39
5
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
tonebeeze wrote:
Hello,
I was wondering if someone can help with providing a detailed explanation as to how they arrived at (c). The explanation on the test review is a bit brief. Thanks
Is x>y^2?
(1) x>y+5
(2) x^2-y^2 = 0
Is \(x>y^2\)?
(1) \(x>y+5\) --> \(x-y>5\). Clearly insufficient, for example: if \(x=1\) and \(y=-10\) then the answer is NO, but if \(x=10\) and \(y=1\) then the answer is YES. Two different answers, hence not sufficient.
(2) \(x^2-y^2=0\) --> \((x-y)(x+y)=0\) --> so either \(x-y=0\) or \(x+y=0\). Also insufficient: if \(x=1\) and \(y=1\), then answer is NO, buy if \(x=\frac{1}{2}\) and \(y=\frac{1}{2}\), then the answer is YES. Two different answers, hence not sufficient.
(1)+(2) As from (1) \(x-y>5\neq{0}\), then from (2) must be true that \(x+y=0\) --> so \(x=-y\) --> substitute \(x\) in (1) --> \(-y-y>5\) --> \(y<-\frac{5}{2}<0\), as \(x=-y\), then \(x>\frac{5}{2}>0\), so \(y^2\) (or which is the same \(x^2\)) will always be more than \(x\), thus the answer to the question "Is \(x>y^2\)" is NO. Sufficient.
To elaborate more as \(x=-y>0\), the only chance for \(x>y^2\) to hold true (or which is the same for \(x>x^2\) to hold true) would be if \(x\) is fraction (\(0<x<1\)). For example if \(x=\frac{1}{2}\) and \(y=-\frac{1}{2}\) then \(x=\frac{1}{2}>y^2=\frac{1}{4}\). But the fact that \(x>\frac{5}{2}>0\) rules out this option.
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
08 Jan 2012, 21:58
3
This post received KUDOS
Expert's post
Hi, there! I'm happy to help with this.
The question: is x > y^2
Statement #1: x > y + 5
This doesn't necessarily tell us anything. If y = 1, and x = 7, then x > y^2, but if y = -6 and x = 0, then x < y^2. But itself, Statement #1 is not sufficient.
Statement #2: x^2 - y^2 = 0
This means that x^2 = y^2, which means that x = ±y. Same absolute value, but both could be positive, both could be negative, or either one could be positive and the other negative. We know that y^2 will be positive, but the x can be positive or negative, so by itself, Statement #2 is insufficient.
Combined Now, we know that x^2 - y^2 = 0 ---> x = ±y, AND we know that x > y + 5. This leads immediate to a few conclusions (a) x is positive and y is negative --- that's the only way they could have the same absolute value, but with x bigger than y + 5 (b) x and y must have an absolute value greater than 2.5, so that the different between positive x and negative y is more than 5
So we are comparing a positive number x, greater than 2.5, to the square of the negative number with the same absolute value. Of course, x^2 and y^2 are equal, so the question really boils down to: given that x > 2.5, is x > x^2?
For all x greater than one, the square of x is greater than x. That's because, squaring is multiplying a number by itself, and when you multiply anything by a number greater than one, it gets bigger.
Thus, if x > 2.5, when we square it, it will get bigger. Therefore, x^2 = y^2 > x for all values of x > 2.5.
Thus, combined, the statements are sufficient together. Answer = C
Does that make sense? Please let me know if you have any questions.
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
23 Nov 2014, 22:03
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
07 Dec 2014, 00:29
Bunuel wrote:
tonebeeze wrote:
Hello,
I was wondering if someone can help with providing a detailed explanation as to how they arrived at (c). The explanation on the test review is a bit brief. Thanks
Is x>y^2?
(1) x>y+5
(2) x^2-y^2 = 0
Is \(x>y^2\)?
(1) \(x>y+5\) --> \(x-y>5\). Clearly insufficient, for example: if \(x=1\) and \(y=-10\) then the answer is NO, but if \(x=10\) and \(y=1\) then the answer is YES. Two different answers, hence not sufficient.
(2) \(x^2-y^2=0\) --> \((x-y)(x+y)=0\) --> so either \(x-y=0\) or \(x+y=0\). Also insufficient: if \(x=1\) and \(y=1\), then answer is NO, buy if \(x=\frac{1}{2}\) and \(y=\frac{1}{2}\), then the answer is YES. Two different answers, hence not sufficient.
(1)+(2) As from (1) \(x-y>5\neq{0}\), then from (2) must be true that \(x+y=0\) --> so \(x=-y\) --> substitute \(x\) in (1) --> \(-y-y>5\) --> \(y<-\frac{5}{2}<0\), as \(x=-y\), then \(x>\frac{5}{2}>0\), so \(y^2\) (or which is the same \(x^2\)) will always be more than \(x\), thus the answer to the question "Is \(x>y^2\)" is NO. Sufficient.
To elaborate more as \(x=-y>0\), the only chance for \(x>y^2\) to hold true (or which is the same for \(x>x^2\) to hold true) would be if \(x\) is fraction (\(0<x<1\)). For example if \(x=\frac{1}{2}\) and \(y=-\frac{1}{2}\) then \(x=\frac{1}{2}>y^2=\frac{1}{4}\). But the fact that \(x>\frac{5}{2}>0\) rules out this option.
Answer: C.
Hope it's clear.
Hello, could someone please remove the highlighted part from the original post? (also from my post now, I suppose). Also, I just wanted to know, if we could also write \(x^2-y^2=0\) as \(x^2=y^2\) which is the same as \(|x|=|y|\). Just asking because I've become slightly comfortable with solving with absolute values. So is this ok?
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
07 Dec 2014, 01:18
1
This post received KUDOS
usre123 wrote:
Hello, could someone please remove the highlighted part from the original post? (also from my post now, I suppose). Also, I just wanted to know, if we could also write \(x^2-y^2=0\) as \(x^2=y^2\) which is the same as \(|x|=|y|\). Just asking because I've become slightly comfortable with solving with absolute values. So is this ok?
yes, you can use \(x^2-y^2=0\) as \(x^2=y^2\) or \(|x|=|y|\)
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
11 Dec 2015, 00:22
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: Is x > y^2? (1) x > y+5 (2) x^2-y^2 = 0 [#permalink]
13 Dec 2015, 03:29
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.
Is x > y^2?
(1) x > y+5
(2) x^2-y^2 = 0
-> In the original condition, there are 2 variables(x, y), which should match with the number of equations. So, you need 2 equations. For 1) 1 equation, for 2) 1 equation, which is likely to make C the answer. In 1) & 2), it is x-y>5 for 1). In case of 2), x=y, x=-y. When x=y, it is 0>5 from x-y>5, which is impossible and becomes x=-y. Thus, x>y^2? --> -y>y^2? --> 0>y^2+y? --> 0>y(y+1)? --> -1<y<0?. In 1), -y>y+5, -5>2y, -5/2>y, -2.5>y, which is no and sufficient. Therefore, the answer is C.
During the exam, it is better to choose C since there are 2 variables.
-> For cases where we need 2 more equations, such as original conditions with “2 variables”, or “3 variables and 1 equation”, or “4 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 70% chance that C is the answer, while E has 25% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, D or E. _________________
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...