Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

This is a very simple question. !x-y!>|x|-|y| can only happen if both the numbers are of different signs.

If xy<0 then these numbers are of opposite signs. Hope this clears.

X=2 y=3 then |x-y|=|x|-|y| if x=-2 and y = 3 then |x-y|>|x|-|y|

Red part is not correct \(|x-y|>{|x|-|y|}\) also holds true when \(x\) and \(y\) have the same sign and the magnitude of \(y\) is more than that of \(x\) (so for \(|y|>|x|\)). Example: \(x=2\) and \(y=3\) --> \(|x-y|=1>-1={|x|-|y|}\); \(x=-2\) and \(y=-3\) --> \(|x-y|=1>-1={|x|-|y|}\).

Actually the only case when \(|x-y|>{|x|-|y|}\) does not hold true is when \(xy>{0}\) (so when \(x\) and \(y\) have the same sign) and \(|x|>|y|\) (simultaneously). In this case \(|x-y|={|x|-|y|}\) (as shown in my previous post). Example: \(x=3\) and \(y=2\) --> \(|x-y|=1={|x|-|y|}\); \(x=-3\) and \(y=-2\) --> \(|x-y|=1={|x|-|y|}\).

This post has left me confused. Earlier for these questions I used to plug in values and got to know if the inequality is valid or not.

As per the algebraic method, this inequality stands when

1. If x and y have different signs (got this by the plug in method) 2. If x and y have same signs but y>x (above post)

So now, we need to look out for a scenario when x and y are positive and y>x. So had the second statement been xy>0 then the answer would have been C?

Yes. If the 2nd statement had mentiond that xy>0 ---> this would mean that both x and y are of the same sign but without knowing whether y>x , this statement would not have been sufficient.

With statement 1, y<x and statement 2 (new) xy>0, you would have been able to answer the question unambiguously, leading to C.
_________________

Consider 1) y < x, let \(x = 1 , y = 0\) then | x - y | = |1 - 0| = 1 | x | - | y | = |1| - |0| = 1 and 1 > 1 ; Therefore False let \(x = 1 , y = -1\) then | x - y | = 2 | x | - | y | = 0 and 2 > 0 ; Therefore True Eliminate A and D, since it's inconsistent

Consider 2) xy < 0 , let \(x = 1 , y = -1\) then | x - y | = |1 - -1| = 2 | x | - | y | = |1| - |1| = 0 and 2 > 1 ; Therefore True let \(x = -1 , y = 1\) then | x - y | = 2 | x | - | y | = 0 and 2 > 0 ; Therefore True Consistent hence B PS: The inequality need not be True or False, it just need to be consistent.

1) if y<x Case I: x<0 => y<0 --> LHS = RHS Case II: x>0, y>0 but <x --> LHS = RHS Case III: x>0, y<0 --> LHS > RHS Hence 1) alone is not sufficient

2) if x*y <0 => either x or y <0 and other has to be >0 Case I: x<0, y>0 --> LHS > RHS Cae II: x>0, y<0 --> LHS > RHS No other case. Hence, 2) alone is sufficient

So the only way that the absolute value of x-y is greater than the absolute value of x minus the absolute value of y could be true is if one or both is a negative number. Which one? Y i think. For example if x was 6 and y was -3. The left side would be l6--3l and the right l6l-l3l. Soto be true. it seems y should be negative. the firs statement says that y is less than x. Not sufficient to determine the initial question. If y is less than x but still positive the two sides are equal.

Second statement xy is less than o. This tells us that one number (x or y) is negative but not which one. Could this still be determinative? by itself no. but coupled with statement one we can say that x is positive and y is negative. In all such situations is the above question true. let's try x=4, y=-20. the right side l4--20l=24, the left side l4l-l20l= -16. Yes!

So I think both are needed. I have no idea how quick you were at solving this.

Okay so my analysis(as quoted below) on this question is wrong. Number two is sufficient. I see now that if either x or y is negative the right side will be greater.

is lx-yl > lxl - lyl ?

1. y<x

2. xy<o

So the only way that the absolute value of x-y is greater than the absolute value of x minus the absolute value of y could be true is if one or both is a negative number. Which one? Y i think. For example if x was 6 and y was -3. The left side would be l6--3l and the right l6l-l3l. Soto be true. it seems y should be negative. the firs statement says that y is less than x. Not sufficient to determine the initial question. If y is less than x but still positive the two sides are equal.

This is incorrectSecond statement xy is less than o. This tells us that one number (x or y) is negative but not which one. Could this still be determinative? by itself no. but coupled with statement one we can say that x is positive and y is negative. In all such situations is the above question true. let's try x=4, y=-20. the right side l4--20l=24, the left side l4l-l20l= -16. Yes!

So I think both are needed. I have no idea how quick you were at solving this.

Basically the question asks whether the distance between the two points x and y on the line is greater than the difference between the individual distances of x and y from 0.

\(|x-y|>|x|-|y|\)?

(1) \(y<x\), 3 possible cases for \(|x-y|>|x|-|y|\):

A. ---------------\(0\)---\(y\)---\(x\)---, \(0<y<x\) --> in this case \(|x-y|>|x|-|y|\) becomes: \(x-y>x-y\) --> \(0>0\). Which is wrong; B. ---------\(y\)---\(0\)---------\(x\)---, \(y<0<x\) --> in this case \(|x-y|>|x|-|y|\) becomes: \(x-y>x+y\) --> \(y<0\). Which is right, as we consider the range \(y<0<x\); C. ---\(y\)---\(x\)---\(0\)--------------, \(y<x<0\) --> in this case \(|x-y|>|x|-|y|\) becomes: \(x-y>-x+y\) --> \(x>y\). Which is right, as we consider the range \(y<0<x\).

Two different answers. Not sufficient.

(2) \(xy<0\), means \(x\) and \(y\) have different signs, hence 2 cases for \(|x-y|>|x|-|y|\):

A. ----\(y\)-----\(0\)-------\(x\)---, \(y<0<x\) --> in this case \(|x-y|>|x|-|y|\) becomes: \(x-y>x+y\) --> \(y<0\). Which is right, as we consider the range \(y<0<x\); B. ----\(x\)-----\(0\)-------\(y\)---, \(x<0<y\) --> in this case \(|x-y|>|x|-|y|\) becomes: \(-x+y>-x-y\) --> \(y>0\). Which is right, as we consider the range \(x<0<y\).

In both cases inequality holds true. Sufficient.

Answer: B.

Bunuel, for 1.B when .. y ..0 .. x, you said \(|x-y|>|x|-|y|\) becomes: \(x-y>x+y\). and 1.c when ... y ... x ... 0, you said \(|x-y|>|x|-|y|\) becomes: \(x-y>-x+y\) --> \(x>y\).

Can you explain this a little bit more? How did you go about removing the absolute signs for this scenarios?

My Answer is E. Lets check this with pluy and play method. Consider - x= 5 and y = 2 -> 3 > 3 x= 2 and y = -2 -> 4 > 0 A not sufficient.

Consider - x= 5 and y = 2 -> 3 > 3 x= -2 and y = -5 -> 3 > -3 B not sufficient.

Answer is E. Cheers!
_________________

----------------------------------------------------------------------------------------- What you do TODAY is important because you're exchanging a day of your life for it! -----------------------------------------------------------------------------------------

Funny, but I remember form university that |a-b|>||a|-|b||>|a|-|b|, therefore the above inequality is valid for all numbers a,b can somebody verify the inequality?

So if we take the case x = -1, y = 1 Then |x – y| = |-2| = 2 and |x| - |y| = 1 – 1 = 0

Again, if x = 5 , y = -1 Then |x – y| = |6| = 6 and |x| - |y| = 5 – 1 = 4

So both 1 and 2 are insuff.

Combine them -> It is obvious that y < 0 and x > 0, so by adding a negative sign the magnitude increases and on the right side the magnitude will be less as the difference is between two positive numbers (i.e. the modulus values).

e.g. x = 2, y = -5

|x – y| = |7| and |x| - |y| = 2 – 5 = -3

So |x – y| > |x| - |y| Answer - C
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

(1) y < x if x=3 and y=2, left hand abs(x-y) = 1, and right hand abs(x) - abs(y) = 1...No. But if x=3 and y=-2, left hand is 5 and right is 1...Yes. INSUFFICIENT.

(2) xy < 0 Let's think the following two cases.

(a) x>0 and y<0 In this case abs(x-y) > abs(x), as in the second plug-in in the discussion of (1) above. So abs(x-y) naturally is greater than abs(x) - abs(y) because abs(x) > abs(x)-abs(y)...Yes.

(b) x<0 and y>0 In this case abs(x-y) = abs(x)+abs(y). Since abs(x) + abs(y) > abs (x) - abs(y), abs(x-y) > abs(x)-abs(y)...Yes.

Re: Is |x - y | > |x | - |y | ? (1) y < x (2) xy < 0 [#permalink]

Show Tags

06 Mar 2013, 21:36

Answer: B

1) Taking statement (1), if y < x, then there can be two cases - a) y is negative, it can lead to two sub cases -- (i) x is negative ==> as y < x so |y| > |x| ==> |x| - |y| will be < 0, and |x - y| > 0 ==> |x - y| > |x| - |y| (ii) x is positive ==> |x - y| would be sum of absolute value of x and y, essentially |x| + |y| ==> |x - y| > |x| - |y|

Problem statement is true.

b) y is positive ==> x can only be positive ==> |x - y| = |x| - |y|

Problem statement is false.

Since we do not know, whether y is positive or negative we can not conclude from statement 1.

2) Taking statement (2), if xy < 0 ==> two sub cases a) x < 0 and y > 0 ==> |x - y| = |x| + |y| which is greater than |x| - |y| b) x > 0 and y < 0 ==> |x - y| = |x| + |y|, which is again greater than |x| - |y|

Statement (2) is sufficient enough to conclude the problem statement.

So basically the explanation is that find the signs test in the following cases

++ - - + - - +

since statement doesn't 1 doesn't help in any way its insufficient and statement 2 either both positive or both negative when we plug examples its never true so its sufficient?
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios http://gmatclub.com/forum/gmat-prep-software-analysis-and-what-if-scenarios-146146.html

How it is B? Did they mention that X and Y are integers? No right, the answer should be E. If they provide details about X and Y as integers then it will be B otherwise it will be E.

can anyone help me about the scenario whether we consider fractions or not in this case?

Scenario:

x=1/2, y=1/3 ==> |1/2-1/3|=1/6 and |1/2|-|1/3|=1/6
_________________

How it is B? Did they mention that X and Y are integers? No right, the answer should be E. If they provide details about X and Y as integers then it will be B otherwise it will be E.

can anyone help me about the scenario whether we consider fractions or not in this case?

Scenario:

x=1/2, y=1/3 ==> |1/2-1/3|=1/6 and |1/2|-|1/3|=1/6

The point is that x = 1/2 and y = 1/3 do not satisfy xy < 0 (the second statement).
_________________

How it is B? Did they mention that X and Y are integers? No right, the answer should be E. If they provide details about X and Y as integers then it will be B otherwise it will be E.

can anyone help me about the scenario whether we consider fractions or not in this case?

Scenario:

x=1/2, y=1/3 ==> |1/2-1/3|=1/6 and |1/2|-|1/3|=1/6

It's implied that it is integers on the GMAT? Is this perception by me correct or completely out of the blue?
_________________

How it is B? Did they mention that X and Y are integers? No right, the answer should be E. If they provide details about X and Y as integers then it will be B otherwise it will be E.

can anyone help me about the scenario whether we consider fractions or not in this case?

Scenario:

x=1/2, y=1/3 ==> |1/2-1/3|=1/6 and |1/2|-|1/3|=1/6

It's implied that it is integers on the GMAT? Is this perception by me correct or completely out of the blue?

No, that's completely wrong, we cannot assume that x and y are integers, if this is not explicitly stated.

Generally, GMAT deals with only Real Numbers: Integers, Fractions and Irrational Numbers. So, if no limitations, then all we can say about a variable in a question that it's a real number.

Probably the best way to solve this problem is plug-in method. Though there are two properties worth to remember: 1. Always true: \(|x+y|\leq{|x|+|y|}\), note that "=" sign holds for \(xy\geq{0}\) (or simply when \(x\) and \(y\) have the same sign);

2. Always true: \(|x-y|\geq{|x|-|y|}\), note that "=" sign holds for \(xy>{0}\) (so when \(x\) and \(y\) have the same sign) and \(|x|>|y|\) (simultaneously). (Our case)

So, the question basically asks whether we can exclude "=" scenario from the second property.

(1) y < x --> we can not determine the signs of \(x\) and \(y\). Not sufficient. (2) xy < 0 --> "=" scenario is excluded from the second property, thus \(|x-y|>|x|-|y|\). Sufficient.

Answer: B.

(1) x>y x=-2,y=-4 then 2>-2 --> yes x=4,y=-2 then 6>2 --> yes can't get a no, so sufficient

(2) xy<0 x=4,y=-2 then 6>2 --> yes x=-2,y=4 then 6>-2 --> yes can't get a no, so sufficient

ans: D why is the answer B? is the question mis-written and the inequality sign should have >= or <=?

Probably the best way to solve this problem is plug-in method. Though there are two properties worth to remember: 1. Always true: \(|x+y|\leq{|x|+|y|}\), note that "=" sign holds for \(xy\geq{0}\) (or simply when \(x\) and \(y\) have the same sign);

2. Always true: \(|x-y|\geq{|x|-|y|}\), note that "=" sign holds for \(xy>{0}\) (so when \(x\) and \(y\) have the same sign) and \(|x|>|y|\) (simultaneously). (Our case)

So, the question basically asks whether we can exclude "=" scenario from the second property.

(1) y < x --> we can not determine the signs of \(x\) and \(y\). Not sufficient. (2) xy < 0 --> "=" scenario is excluded from the second property, thus \(|x-y|>|x|-|y|\). Sufficient.

Answer: B.

(1) x>y x=-2,y=-4 then 2>-2 --> yes x=4,y=-2 then 6>2 --> yes can't get a no, so sufficient

(2) xy<0 x=4,y=-2 then 6>2 --> yes x=-2,y=4 then 6>-2 --> yes can't get a no, so sufficient

ans: D why is the answer B? is the question mis-written and the inequality sign should have >= or <=?

What about the case x = 4, y = 2 in statement 1? then we get 2 > 2 --> No Hence statement 2 is not sufficient.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...