Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 06 May 2015, 21:10

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Is x<y<z? (1) |z-x|=|z-y|+|y-x| (2) z>x

Author Message
TAGS:
VP
Joined: 10 Jun 2007
Posts: 1465
Followers: 6

Kudos [?]: 133 [0], given: 0

Is x<y<z? (1) |z-x|=|z-y|+|y-x| (2) z>x [#permalink]  26 Oct 2007, 06:22
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 0 sessions
Is x<y<z?
(1) |z-x|=|z-y|+|y-x|
(2) z>x
Current Student
Joined: 31 Aug 2007
Posts: 371
Followers: 1

Kudos [?]: 54 [0], given: 1

I guessed E on this, so no explanation...just tried out a few diff numbers.
VP
Joined: 08 Jun 2005
Posts: 1147
Followers: 6

Kudos [?]: 128 [0], given: 0

statement 1

|z-x|=|z-y|+|y-x|

consider x=y=z

0 = 0+0 ---> true

consider z=3 y=2 x=1

2 = 1+1 ---> true

statement 2

clearly insufficient ---> no info on y

both statements

since z > x then y has to be in between to balance |z-x|

note that in |z-y|+|y-x| the effect of y is non existence (canceled out)

Manager
Joined: 02 Aug 2007
Posts: 146
Followers: 1

Kudos [?]: 14 [0], given: 0

KillerS, is this an assumption we can infer:
"since z > x then y has to be in between to balance |z-x|"

This is not stated explicitly in the stem. I also tried integers and came up with E.
VP
Joined: 08 Jun 2005
Posts: 1147
Followers: 6

Kudos [?]: 128 [0], given: 0

bkk145 wrote:
KillerSquirrel wrote:

statement 1

|z-x|=|z-y|+|y-x|

consider x=y=z

0 = 0+0 ---> true

consider z=3 y=2 x=1

2 = 1+1 ---> true

statement 2

clearly insufficient ---> no info on y

both statements

since z > x then y has to be in between to balance |z-x|

note that in |z-y|+|y-x| the effect of y is non existence (canceled out)

What if x=0, y=0, z=1?

Yes ! you got me there

VP
Joined: 10 Jun 2007
Posts: 1465
Followers: 6

Kudos [?]: 133 [0], given: 0

KillerSquirrel wrote:
bkk145 wrote:
KillerSquirrel wrote:

statement 1

|z-x|=|z-y|+|y-x|

consider x=y=z

0 = 0+0 ---> true

consider z=3 y=2 x=1

2 = 1+1 ---> true

statement 2

clearly insufficient ---> no info on y

both statements

since z > x then y has to be in between to balance |z-x|

note that in |z-y|+|y-x| the effect of y is non existence (canceled out)

What if x=0, y=0, z=1?

Yes ! you got me there

I think it is best to think of this problem as a distance concept.
For example, |a - b| means distance from a to b
So, |z-x|=|z-y|+|y-x| can be interpret as:
distance from z to x = distance from z to y + distance from y to x
This means
z...y...x
OR
x...y...z
So (1) is INSUFFICIENT
(2) is obviously INSUFFICIENT, don't know y
Together, it must be true that
x...y...z
However, the problem says nothing about y or x being equal; thus, INSUFFICIENT.

OA=E
VP
Joined: 08 Jun 2005
Posts: 1147
Followers: 6

Kudos [?]: 128 [0], given: 0

bkk145 wrote:
KillerSquirrel wrote:
bkk145 wrote:
KillerSquirrel wrote:

statement 1

|z-x|=|z-y|+|y-x|

consider x=y=z

0 = 0+0 ---> true

consider z=3 y=2 x=1

2 = 1+1 ---> true

statement 2

clearly insufficient ---> no info on y

both statements

since z > x then y has to be in between to balance |z-x|

note that in |z-y|+|y-x| the effect of y is non existence (canceled out)

What if x=0, y=0, z=1?

Yes ! you got me there

I think it is best to think of this problem as a distance concept.
For example, |a - b| means distance from a to b
So, |z-x|=|z-y|+|y-x| can be interpret as:
distance from z to x = distance from z to y + distance from y to x
This means
z...y...x
OR
x...y...z
So (1) is INSUFFICIENT
(2) is obviously INSUFFICIENT, don't know y
Together, it must be true that
x...y...z
However, the problem says nothing about y or x being equal; thus, INSUFFICIENT.

Yes - this is a very good approach in absolute value problems - once again good question - touché !

Similar topics Replies Last post
Similar
Topics:
3 If x>0 Is (x)^1/2>x 4 02 Sep 2013, 06:54
x^2=>x??? 2 24 May 2013, 14:15
1 Is x^2>x (1) x^2 is greater than 1 (2) x is greater than -1 2 14 May 2012, 09:39
1 Is (x-2)^2>x^2 1.x^2>x 2.1/x>0 I was wondering why 4 10 Apr 2011, 03:40
Is z+z<z? 1) -4z>4z 2) z^3<z^2 5 18 Oct 2006, 12:26
Display posts from previous: Sort by