Find all School-related info fast with the new School-Specific MBA Forum

It is currently 14 Sep 2014, 18:34

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

It takes the high-speed train x hours to travel the z miles

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
4 KUDOS received
Manager
Manager
avatar
Joined: 04 Dec 2008
Posts: 113
Followers: 1

Kudos [?]: 45 [4] , given: 2

It takes the high-speed train x hours to travel the z miles [#permalink] New post 19 May 2009, 22:36
4
This post received
KUDOS
12
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

55% (02:56) correct 45% (02:07) wrong based on 400 sessions
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?

(A) z(y – x)/x + y

(B) z(x – y)/x + y

(C) z(x + y)/y – x

(D) xy(x – y)/x + y

(E) xy(y – x)/x + y
[Reveal] Spoiler: OA

Last edited by Bunuel on 07 Feb 2012, 06:34, edited 1 time in total.
Edited the question and added the OA
7 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 08 Jan 2009
Posts: 332
Followers: 2

Kudos [?]: 66 [7] , given: 5

GMAT Tests User
Re: Man Cat 4 #12-High speed train v. Regular Train [#permalink] New post 19 May 2009, 23:04
7
This post received
KUDOS
Let Sh be the speed of the faster train
Let Sl be the speed of the slower train.

Sh = z/x and Sl = z/y

Since the move towards each other relative speed = Sl + Sh = z/x + z/y

The time the both trains meet t = z / z/x + z/y = xy / x + y

The distance travelled by Sh = Sh * t = z/x * xy / x + y = zy/ x +y
The distance travelled by Sl = Sl * t = z/y * xy / x + y = zx/ x +y

Now the Number of mile more = zy/ x +y - zx/ x +y = z( y-x)/ x +y

Ans A
Intern
Intern
avatar
Joined: 24 Sep 2009
Posts: 23
Followers: 4

Kudos [?]: 66 [0], given: 2

Re: Man Cat 4 #12-High speed train v. Regular Train [#permalink] New post 29 Nov 2009, 13:26
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?

(1) Pick numbers and plug in
(2) Make sure you pick numbers that make the prompt true. IE: The rate of the faster train must be faster than that of the regular train.
(3) Set up an rate*time=distance chart
(4) They travel for the same time, so T is the time for each one
(5) They travel distance differences. Set these columns up in terms of "T" (RATE * T)
(6) However, we know the total distance they traveled combined is equal to D
(7) Pick a value to be D. I recommended you the value you chose for Z
(8) Set the value of the distances equal to Z, to solve for T
(9) Plug in the value for T into the items you set up in step 5
(10) Subtract what you get in step 9 from each other to find the difference
(11) Now plug in your variables into the answer choices and look for one that matches

-----
(Step 1) X=4, Y=6, Z=12
(Step 2) "Ok this holds true to the prompt, check!"
(Steps 3,4,5,6, and 7)
Train...............R.......*.......T.......=......D
Fast...............Z/X..............T...............D
Regular..........Z/Y..............T...............D
Total.............Combine.......T...............D

Train...............R.......*.......T.......=......D
Fast.................3...............T...............3T
Regular............2...............T...............2T
Total................5..............T...............12

(Step 8)
5T = 12
T = 12/5

(Step 9)
Train...............R.......*.......T.......=......D
Fast.................3.............12/5............7.2
Regular............2.............12/5............4.8
Total................5..............T...............12

(Step 10)

7.2 - 4.8 = 2.4

(Step 11)
Only answer A = 2.4 when you plug in our values for Z,X, and Y.

-----
A key to being able to solve this problem on GMAT Day is to understand that in a situation where trains or people are meeting, the total distance is going to be D (unless one explicitly traveled more) and the total time is going to be T (unless one left before the other).
-----
Benjiboo
Expert Post
12 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23534
Followers: 3483

Kudos [?]: 26094 [12] , given: 2705

Re: Manhattan CAT math question [#permalink] New post 21 May 2010, 03:10
12
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Prax wrote:
Hi,

I have another doubt:

It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?


z(y – x)/x + y

z(x – y)/x + y

z(x + y)/y – x

xy(x – y)/x + y

xy(y – x)/x + y

Please help me with this question.


It takes the high-speed train x hours to travel the z miles --> rate of high-speed train is rate_{high-speed}=\frac{distance}{time}=\frac{z}{x};

It takes the regular train y hours to travel the same distance --> rate of regular train is rate_{regular}=\frac{distance}{time}=\frac{z}{y};

Time in which they meet is time=\frac{distance}{combined-rate}=\frac{z}{\frac{z}{x}+\frac{z}{y}}=\frac{xy}{x+y}.

Difference in distances covered: {Time}*{Rate of high-speed train} - {Time}{Rate of regular train} --> \frac{xy}{x+y}*\frac{z}{x}-\frac{xy}{x+y}*\frac{z}{y}=\frac{z(y-x)}{x+y}.

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 14 Feb 2010
Posts: 100
Followers: 1

Kudos [?]: 11 [0], given: 0

Re: Manhattan CAT math question [#permalink] New post 21 May 2010, 03:30
I solved it this way:

Speed of high speed train =z/x
Speed of normal train = z/y

Let d be the distance covered by high speed train when they meet.
So distance covered by normal train is z-d

When they meet, the time taken by both is same. So,

d/x = (z-d)/y
d*y = z*x - d*x
d(y+x) = z*x
d = z*x / x+y

the difference between the distance would be d - (z-d) which is equal to 2d - z
= 2z*x / (x+y) - z
= 2z*x - z*x - z*y / (x+y)
= z(x-y)/x+y

which is option b

please let me know where am I going wrong.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23534
Followers: 3483

Kudos [?]: 26094 [1] , given: 2705

Re: Manhattan CAT math question [#permalink] New post 21 May 2010, 03:56
1
This post received
KUDOS
Expert's post
Prax wrote:
I solved it this way:

Speed of high speed train =z/x
Speed of normal train = z/y

Let d be the distance covered by high speed train when they meet.
So distance covered by normal train is z-d

When they meet, the time taken by both is same. So,

d/x = (z-d)/y
d*y = z*x - d*x
d(y+x) = z*x
d = z*x / x+y


the difference between the distance would be d - (z-d) which is equal to 2d - z
= 2z*x / (x+y) - z
= 2z*x - z*x - z*y / (x+y)
= z(x-y)/x+y

which is option b

please let me know where am I going wrong.


You can solve this way too, but you made a mistake in calculation: time=\frac{distance}{rate}=\frac{d}{\frac{z}{x}}=\frac{z-d}{\frac{z}{y}} --> dx=zy-dy (not d/x = (z-d)/y) --> d=\frac{zy}{x+y}.

Difference 2d-z=\frac{2zy}{x+y}-z=\frac{z(y-x)}{x+y}.

Answer: A.

You could spot that answer B can not be the correct choice as it's negative (numerator x-y<0) (high speed train needs less time to cover the distance than regular train, so x<y) but the difference in distances can not be negative as high speed train would cover greater distance than regular train when they meet (for exact same reason choice D can be eliminated as well).

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

4 KUDOS received
Intern
Intern
avatar
Joined: 21 Feb 2010
Posts: 3
Followers: 0

Kudos [?]: 4 [4] , given: 0

Re: High-speed train [#permalink] New post 21 May 2010, 05:45
4
This post received
KUDOS
The problem can be solved very easily with the concepts of Relative velocity..

if we assume that slow moving tarin is at stand still and high speed train is moving with the speed : x+y

time taken to travel the distance : z/(x+y)

diffrence in the distance tarvelled = distance traveled by high speed tarin - distance traveled by slow moving train
= x[z/(x+y)] - y[z/(x+y)]
= z(x-y)/(x+y)

hope it will be helpfull.. :)
3 KUDOS received
CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2793
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 177

Kudos [?]: 943 [3] , given: 235

GMAT Tests User Reviews Badge
Re: Man Cat 4 #12-High speed train v. Regular Train [#permalink] New post 22 Oct 2010, 19:38
3
This post received
KUDOS
joyseychow wrote:
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?

(A) z(y – x)/x + y -> Contender

(B) z(x – y)/x + y -> y>x as B is slow train thus time taken by B > than by A-> Wrong

(C) z(x + y)/y – x -> Distance between them is Z. This is greater than Z. Not possible

(D) xy(x – y)/x + y -> Wrong ..same reason as B

(E) xy(y – x)/x + y ->The dimensions of this expression are not of Distance. Wrong

Though I had calculated this during my CAT, the best way to solve is as stated above.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Gmat test review :
670-to-710-a-long-journey-without-destination-still-happy-141642.html

Senior Manager
Senior Manager
avatar
Joined: 25 Nov 2011
Posts: 261
Location: India
Concentration: Technology, General Management
GPA: 3.95
WE: Information Technology (Computer Software)
Followers: 3

Kudos [?]: 39 [0], given: 20

Re: Manhattan CAT math question [#permalink] New post 07 Feb 2012, 06:14
Prax wrote:
I solved it this way:

Speed of high speed train =z/x
Speed of normal train = z/y

Let d be the distance covered by high speed train when they meet.
So distance covered by normal train is z-d

When they meet, the time taken by both is same. So,

d/x = (z-d)/y
d*y = z*x - d*x
d(y+x) = z*x
d = z*x / x+y

the difference between the distance would be d - (z-d) which is equal to 2d - z
= 2z*x / (x+y) - z
= 2z*x - z*x - z*y / (x+y)
= z(x-y)/x+y

which is option b

please let me know where am I going wrong.


If it takes x hours to travel z miles, then it takes d(x/z) hours to travel d miles. But you have wrongly calculated by directly considering d/x.
_________________

-------------------------
-Aravind Chembeti

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4751
Location: Pune, India
Followers: 1110

Kudos [?]: 5014 [2] , given: 164

Re: It takes the high-speed train x hours to travel the z miles [#permalink] New post 07 Feb 2012, 08:03
2
This post received
KUDOS
Expert's post
joyseychow wrote:
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?

(A) z(y – x)/x + y

(B) z(x – y)/x + y

(C) z(x + y)/y – x

(D) xy(x – y)/x + y

(E) xy(y – x)/x + y


You can also use ratios here.
Ratio of time taken by high speed:regular = x:y
Ratio of distance covered in same time by high speed:regular = y:x (inverse of ratio of speed)
So distance covered by high speed train will be y/(x+y) * z
and distance covered by regular train will be x(x+y) * z
High speed train will travel yz/(x+y) - xz/(x+y) = z(y-x)/(x+y) more than regular train.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
User avatar
Joined: 28 Jul 2011
Posts: 213
Followers: 0

Kudos [?]: 27 [0], given: 13

Re: It takes the high-speed train x hours to travel the z miles [#permalink] New post 01 Apr 2012, 07:17
Vote for A

S * T = DIST

Given

High ST - x-hrs to travel Z miles
Regular ST = y-hrs to travel z miles

therefore
HST speed = z/x
RST speed = z/y


Trains start at same time = t

Travel towards each other
[z/x + z/y] * t = z
t = t / [z/x + z/y]
t = zxy / z(x+y)
t = xy / (x+y)


Dist covered by HST = zt/x
Dist covered by RST = zt/y

How much more did HST travel
= zt/x - zt/y
= zt(y-z) / xy
= z [xy / (x+y)] * [(y-z) / xy]
= z (y-z) / (x+y)
1 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 613
WE: Science (Education)
Followers: 70

Kudos [?]: 515 [1] , given: 43

GMAT Tests User
Re: MGMAT [#permalink] New post 26 Sep 2012, 11:43
1
This post received
KUDOS
Bunuel wrote:
ishanand wrote:
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?


(A) z(y - x)/(x + y)

(B) z(x - y)/(x + y)

(C) z(x + y)/(y - x)

(D) xy(x - y)/(x + y)

(E) xy(y - x)/(x + y)


Merging similar topics. Please ask if anything remains unclear.


z represents distance, x and y represent time.
The answer requires an expression with units of distance.
We can immediately eliminate answers D and E, both have units of time squared and not distance.

The regular train is slower than the high-speed train, so necessarily y > x. We can eliminate choice B, being negative.

Since (x + y)/(y - x) > 1, we can eliminate choice C, as neither of the two trains could have traveled a distance greater than z until they passed each other.

We are left with the only choice A.
The above posts confirm that it is the correct answer.

Answer A.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Intern
Intern
User avatar
Joined: 19 Aug 2012
Posts: 5
Location: United States
Concentration: Strategy, Marketing
GMAT Date: 11-20-2012
GPA: 3.19
WE: Information Technology (Computer Software)
Followers: 2

Kudos [?]: 9 [0], given: 0

Re: Man Cat 4 #12-High speed train v. Regular Train [#permalink] New post 15 Oct 2012, 15:48
gurpreetsingh wrote:
joyseychow wrote:
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?

(A) z(y – x)/x + y -> Contender

(B) z(x – y)/x + y -> y>x as B is slow train thus time taken by B > than by A-> Wrong

(C) z(x + y)/y – x -> Distance between them is Z. This is greater than Z. Not possible

(D) xy(x – y)/x + y -> Wrong ..same reason as B

(E) xy(y – x)/x + y ->The dimensions of this expression are not of Distance. Wrong

Though I had calculated this during my CAT, the best way to solve is as stated above.


Awesome method! Should stick on to this.. And I tried by cooking up few simple values, calculated the answer required and substituted it in the equations given. The one which satisfies the values would be my option!
I tried with the following values..

x = 3
y = 2
z = 60 ( a value divisible by both x and y, aid for simple calculation)

the time when both the trains would meet = z /(x+y) [Relative Speed theory] = 12 mins

Distance traveled by Train A = 36 miles
Distance traveled by Train B = 24 miles
Difference = 12 miles (the actual answer expected while substituting the given values in equation)

Substituting the values of x,y and z in option A,

=> z(x-y)/(x+y)
=> 60(3-2)/(3+2)
=> 12 -- equates the value expected.

Hence answer is option A.

Though this method takes a considerable time of explanation, it takes less than a minute to solve this way. But the choice of assumption values must be small and should make calculations easier.
_________________

Kudos n Gud luck :)
-------------------------------------------------------------
AshwaKann :)
Self-exploration keeps you alive every moment! Keep exploring :)

2 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 15

Kudos [?]: 195 [2] , given: 11

GMAT ToolKit User GMAT Tests User
Re: It takes the high-speed train x hours to travel the z miles [#permalink] New post 01 Dec 2012, 19:49
2
This post received
KUDOS
Rate of high speed train: \frac{z}{x}
Rate of regular train: \frac{z}{y}

t: time it takes for two trains to pass each other from opposite direction

\frac{z}{x}(t)+\frac{z}{y}(t)=z

Calculate t: t = \frac{x+y}{xy}

Distance travelled by high-speed train minus regular train:

(\frac{z}{x})(\frac{xy}{x+y})-(\frac{z}{y})(\frac{xy}{x+y})

Answer: z(\frac{y-x}{x+y})
_________________

Impossible is nothing to God.

Manager
Manager
User avatar
Joined: 07 Feb 2011
Posts: 89
Followers: 0

Kudos [?]: 17 [0], given: 43

Re: Manhattan CAT math question [#permalink] New post 28 Mar 2013, 12:17
Bunuel wrote:
Prax wrote:
Hi,

I have another doubt:

It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?


z(y – x)/x + y

z(x – y)/x + y

z(x + y)/y – x

xy(x – y)/x + y

xy(y – x)/x + y

Please help me with this question.


It takes the high-speed train x hours to travel the z miles --> rate of high-speed train is rate_{high-speed}=\frac{distance}{time}=\frac{z}{x};

It takes the regular train y hours to travel the same distance --> rate of regular train is rate_{regular}=\frac{distance}{time}=\frac{z}{y};

Time in which they meet is time=\frac{distance}{combined-rate}=\frac{z}{\frac{z}{x}+\frac{z}{y}}=\frac{xy}{x+y}.

Difference in distances covered: {Time}*{Rate of high-speed train} - {Time}{Rate of regular train} --> \frac{xy}{x+y}*\frac{z}{x}-\frac{xy}{x+y}*\frac{z}{y}=\frac{z(y-x)}{x+y}.

Answer: A.


Hey can someone help me. So something I sort of missed was why we combine the rate (understood this) but then to figure out the time the trains cross each other to simply divide the distance z by the combined rates?

The distance z is the total distance for A to B. Which is different for what we're looking for, no? Aren't we looking for the time (and hence corresponding) distance where A and B cross each other? That is not the same as z (to me) but should be shorter than z
_________________

We appreciate your kudos'

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23534
Followers: 3483

Kudos [?]: 26094 [0], given: 2705

Re: Manhattan CAT math question [#permalink] New post 28 Mar 2013, 12:28
Expert's post
manimgoindowndown wrote:
Bunuel wrote:
Prax wrote:
Hi,

I have another doubt:

It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?


z(y – x)/x + y

z(x – y)/x + y

z(x + y)/y – x

xy(x – y)/x + y

xy(y – x)/x + y

Please help me with this question.


It takes the high-speed train x hours to travel the z miles --> rate of high-speed train is rate_{high-speed}=\frac{distance}{time}=\frac{z}{x};

It takes the regular train y hours to travel the same distance --> rate of regular train is rate_{regular}=\frac{distance}{time}=\frac{z}{y};

Time in which they meet is time=\frac{distance}{combined-rate}=\frac{z}{\frac{z}{x}+\frac{z}{y}}=\frac{xy}{x+y}.

Difference in distances covered: {Time}*{Rate of high-speed train} - {Time}{Rate of regular train} --> \frac{xy}{x+y}*\frac{z}{x}-\frac{xy}{x+y}*\frac{z}{y}=\frac{z(y-x)}{x+y}.

Answer: A.


Hey Bunuel so something I sort of missed was why we combine the rate (understood this) but then to figure out the time the trains cross each other to simply divide the distance z by the combined rates?

The distance z is the total distance for A to B. Which is different for what we're looking for, no? Aren't we looking for the time (and hence corresponding) distance where A and B cross each other?


Two trains are traveling to meet each other.

Distance = 100 miles;
Rate of train A = 20 miles per hour;
Rate of train B = 30 miles per hour.

In how many hours will they meet?

(Time) = (Distance)/(Combined rate) = 100/(20+30) = 2 hours.

Does this make sense?
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 18 Nov 2011
Posts: 37
Concentration: Strategy, Marketing
GMAT Date: 06-18-2013
GPA: 3.98
Followers: 0

Kudos [?]: 4 [0], given: 0

Re: Manhattan CAT math question [#permalink] New post 28 Mar 2013, 15:05
Bunuel wrote:
Hi,

Time in which they meet is time=\frac{distance}{combined-rate}=\frac{z}{\frac{z}{x}+\frac{z}{y}}=\frac{xy}{x+y}.



I must be making a dumb algebra error somewhere in this step. How did you convert the fraction like this? I keep ending up with somehting slightly different
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23534
Followers: 3483

Kudos [?]: 26094 [0], given: 2705

Re: Manhattan CAT math question [#permalink] New post 29 Mar 2013, 02:01
Expert's post
hitman5532 wrote:
Bunuel wrote:
Hi,

Time in which they meet is time=\frac{distance}{combined-rate}=\frac{z}{\frac{z}{x}+\frac{z}{y}}=\frac{xy}{x+y}.



I must be making a dumb algebra error somewhere in this step. How did you convert the fraction like this? I keep ending up with somehting slightly different


\frac{z}{\frac{z}{x}+\frac{z}{y}}=\frac{z}{\frac{zy+zx}{xy}}=\frac{xyz}{zy+zx}=\frac{xy}{x+y}.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 17 Dec 2012
Posts: 395
Location: India
Followers: 13

Kudos [?]: 179 [0], given: 10

Re: It takes the high-speed train x hours to travel the z miles [#permalink] New post 29 Mar 2013, 02:54
joyseychow wrote:
It takes the high-speed train x hours to travel the z miles from Town A to Town B at a constant rate, while it takes the regular train y hours to travel the same distance at a constant rate. If the high-speed train leaves Town A for Town B at the same time that the regular train leaves Town B for Town A, how many more miles will the high-speed train have traveled than the regular train when the two trains pass each other?

(A) z(y – x)/x + y

(B) z(x – y)/x + y

(C) z(x + y)/y – x

(D) xy(x – y)/x + y

(E) xy(y – x)/x + y


Let us call the trains as H and R resp.


Given:

Distance = z
Time taken by H = x
Time taken by R = y

Question: When the trains meet how much more distance has H traveled than R? For that we need to calculate the speed of both the trains and the time taken for them to meet.

Deductions:

Speed of H = z/x
Speed of R= z/y

To calculate the time taken for them to meet we need to use the total distance between the two towns and the combined speed as they are moving towards each other.

Time taken for the trains to meet= z/(z/x +z/y) = xy/(x+y)

Distance traveled by H when the trains meet= time taken to meet* speed of H

=xy/(x+y) * z/x

=zy/(x+y)

Similarly for R , we have the distance = zx/(x+y)

The difference is z(y-x)/(x+y)

Hence choice A.
_________________

Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravna.com/courses.php

Classroom Courses in Chennai
Online and Correspondence Courses

Manager
Manager
User avatar
Joined: 07 Feb 2011
Posts: 89
Followers: 0

Kudos [?]: 17 [0], given: 43

Re: Manhattan CAT math question [#permalink] New post 29 Mar 2013, 05:04
Hey Bunuel so something I sort of missed was why we combine the rate (understood this) but then to figure out the time the trains cross each other to simply divide the distance z by the combined rates?

The distance z is the total distance for A to B. Which is different for what we're looking for, no? Aren't we looking for the time (and hence corresponding) distance where A and B cross each other?[/quote]

Two trains are traveling to meet each other.

Distance = 100 miles;
Rate of train A = 20 miles per hour;
Rate of train B = 30 miles per hour.

In how many hours will they meet?

(Time) = (Distance)/(Combined rate) = 100/(20+30) = 2 hours.

Does this make sense?[/quote]

Combining the rates makes sense to me, they are both moving to each other relatively

Here's what doesn't make sense to me.

The distance between the two starting points of the train is 100 miles (z). If we are trying to find what time they will pass each other, that distance MUST BE less than 100 if both trains have a positive velocity.

This distance is less than the starting points of the train from 100 miles (z)?

So I don't see how we can simple plug in z here. Maybe there's a test assumption that simplifies this situation for us.
_________________

We appreciate your kudos'

Re: Manhattan CAT math question   [#permalink] 29 Mar 2013, 05:04
    Similar topics Author Replies Last post
Similar
Topics:
1 A bullet train travels in excess of 150 miles per hour. gmatchase 4 18 Nov 2012, 12:51
1 Experts publish their posts in the topic Train A leaves the station traveling at 30 miles per hour. loveparis 2 09 Feb 2011, 14:16
It takes the high-speed train x hours to travel the z miles pm4553 5 04 Oct 2008, 06:08
It takes the high-speed train x hours to travel the z miles gmatnub 12 25 Jun 2008, 21:56
Train X traveled 250miles from the city A to the city B. At leokkim 7 27 Jul 2007, 09:34
Display posts from previous: Sort by

It takes the high-speed train x hours to travel the z miles

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 36 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.