Jean puts N identical cubes, the sides of which are 1 inch : GMAT Data Sufficiency (DS)
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

It is currently 09 Dec 2016, 12:08
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Jean puts N identical cubes, the sides of which are 1 inch

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

4 KUDOS received
Moderator
Moderator
User avatar
Joined: 01 Sep 2010
Posts: 3033
Followers: 768

Kudos [?]: 6344 [4] , given: 991

Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 03 Sep 2012, 01:16
4
This post received
KUDOS
9
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

45% (02:51) correct 55% (01:39) wrong based on 211 sessions

HideShow timer Statistics

Jean puts N identical cubes, the sides of which are 1 inch long, inside a rectangular box, each side of which is longer than 1 inch, such that the box is completely filled with no gaps and no cubes left over. What is N?

(1) 56 < N < 63
(2) N is a multiple of 3.

[Reveal] Spoiler:
In the explanation of this problem I can't figure out why " To be able to put N cubes into a rectangular box with no gaps and no left-over cubes, you must have the following equality: N = length × width × height. Moreover, if the length, width, and height are all greater than 1, then it must be true that N is the product of at least 3 primes. If N is itself prime or the product of just 2 primes (unique or not), then the condition fails.

So you can rephrase the question this way: is N the product of at least 3 primes?
"

Can you help me ?? the key of this problem is just this process of thought.......:(

Thanks
[Reveal] Spoiler: OA

_________________

COLLECTION OF QUESTIONS AND RESOURCES
Quant: 1. ALL GMATPrep questions Quant/Verbal 2. Bunuel Signature Collection - The Next Generation 3. Bunuel Signature Collection ALL-IN-ONE WITH SOLUTIONS 4. Veritas Prep Blog PDF Version 5. MGMAT Study Hall Thursdays with Ron Quant Videos
Verbal:1. Verbal question bank and directories by Carcass 2. MGMAT Study Hall Thursdays with Ron Verbal Videos 3. Critical Reasoning_Oldy but goldy question banks 4. Sentence Correction_Oldy but goldy question banks 5. Reading-comprehension_Oldy but goldy question banks

Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90090 [4] , given: 10413

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 03 Sep 2012, 01:44
4
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
Jean puts N identical cubes, the sides of which are 1 inch long, inside a rectangular box, each side of which is longer than 1 inch, such that the box is completely filled with no gaps and no cubes left over. What is N?

Notice that, since the volume of each cube is 1 inch^3, then the volume of N cubes (the volume of the rectangular box) is N inch^3. For example if there are 10 cubes, then the volume of the rectangular box (total volume of 10 cubes) is 10 inch^3. Next, we are told that the length, the width and the height of the rectangular box is longer than 1 inch and there are no gaps when all cubes are put in the box, so the length, the width and the height of the rectangular box are integers more than one: 2, 3, 4, ... Thus each dimension of the rectangular box must have at least one prime in it, so the volume (length*width*height) must be the product of at least 3 primes (not necessarily distinct primes).

(1) 56 < N < 63. N could be 57, 58, 59, 60, 61, or 62. Analyze each case:

57=3*19 --> just two primes. Discard.
58=2*29 --> just two primes. Discard.
59 --> prime itself. Discard.
60=2^2*3*5 --> the product of 4 primes. OK. For example, the the length, the width and the height of the cube cold be 2, by 6, by 5.
61 --> prime itself. Discard.
62=2*31 --> just two primes. Discard.

As we can see, N can only be 60. Sufficient.

(2) N is a multiple of 3. Multiple values of N are possible so that it to be a multiple of 3 AND the product of at least 3 primes, for example 27 or 60. Not sufficient.

Answer: A.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90090 [1] , given: 10413

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 06 Sep 2012, 09:06
1
This post received
KUDOS
Expert's post
kotela wrote:
Bunuel wrote:
Jean puts N identical cubes, the sides of which are 1 inch long, inside a rectangular box, each side of which is longer than 1 inch, such that the box is completely filled with no gaps and no cubes left over. What is N?

Notice that, since the volume of each cube is 1 inch^3, then the volume of N cubes (the volume of the rectangular box) is N inch^3. For example if there are 10 cubes, then the volume of the rectangular box (total volume of 10 cubes) is 10 inch^3. Next, we are told that the length, the width and the height of the rectangular box is longer than 1 inch and there are no gaps when all cubes are put in the box, so the length, the width and the height of the rectangular box are integers more than one: 2, 3, 4, ... Thus each dimension of the rectangular box must have at least one prime in it, so the volume (length*width*height) must be the product of at least 3 primes (not necessarily distinct primes).

(1) 56 < N < 63. N could be 57, 58, 59, 60, 61, or 62. Analyze each case:

57=3*19 --> just two primes. Discard.
58=2*29 --> just two primes. Discard.
59 --> prime itself. Discard.
60=2^2*3*5 --> the product of 4 primes. OK. For example, the the length, the width and the height of the cube cold be 2, by 6, by 5.
61 --> prime itself. Discard.
62=2*31 --> just two primes. Discard.

As we can see, N can only be 60. Sufficient.

(2) N is a multiple of 3. Multiple values of N are possible so that it to be a multiple of 3 AND the product of at least 3 primes, for example 27 or 60. Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunnel,

The question says "each side of which is longer than 1 inch" so the lengths of each sides can even be "2, 2, 2, or 3,3,3" may i know why you took the lenghts as "2,3,4"

Regards
Srinath


I said that "the length, the width and the height of the rectangular box are integers more than one: 2, 3, 4, ... " So, yes, each dimension can be 2 or 3, for example .
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Moderator
Moderator
User avatar
Joined: 01 Sep 2010
Posts: 3033
Followers: 768

Kudos [?]: 6344 [0], given: 991

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 03 Sep 2012, 02:03
First of all thanks for editing my question in an appropiate manner.

Secondly is clear. I should infer a lot on this question. I always have the doubt that these kind of questions are too convoluted for the exam.


Anyway, thanks :(
_________________

COLLECTION OF QUESTIONS AND RESOURCES
Quant: 1. ALL GMATPrep questions Quant/Verbal 2. Bunuel Signature Collection - The Next Generation 3. Bunuel Signature Collection ALL-IN-ONE WITH SOLUTIONS 4. Veritas Prep Blog PDF Version 5. MGMAT Study Hall Thursdays with Ron Quant Videos
Verbal:1. Verbal question bank and directories by Carcass 2. MGMAT Study Hall Thursdays with Ron Verbal Videos 3. Critical Reasoning_Oldy but goldy question banks 4. Sentence Correction_Oldy but goldy question banks 5. Reading-comprehension_Oldy but goldy question banks

Manager
Manager
avatar
Joined: 25 Jun 2012
Posts: 71
Location: India
WE: General Management (Energy and Utilities)
Followers: 4

Kudos [?]: 103 [0], given: 15

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 03 Sep 2012, 03:10
great solution buenel..!!!

I didt consider while solving that Rectangular box must have integer value for its L,B &H.

I went unnecessarily on jumping to fractional values..!!

Poor of me...
Director
Director
avatar
Joined: 28 Jul 2011
Posts: 563
Location: United States
Concentration: International Business, General Management
GPA: 3.86
WE: Accounting (Commercial Banking)
Followers: 3

Kudos [?]: 202 [0], given: 16

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 06 Sep 2012, 07:47
Bunuel wrote:
Jean puts N identical cubes, the sides of which are 1 inch long, inside a rectangular box, each side of which is longer than 1 inch, such that the box is completely filled with no gaps and no cubes left over. What is N?

Notice that, since the volume of each cube is 1 inch^3, then the volume of N cubes (the volume of the rectangular box) is N inch^3. For example if there are 10 cubes, then the volume of the rectangular box (total volume of 10 cubes) is 10 inch^3. Next, we are told that the length, the width and the height of the rectangular box is longer than 1 inch and there are no gaps when all cubes are put in the box, so the length, the width and the height of the rectangular box are integers more than one: 2, 3, 4, ... Thus each dimension of the rectangular box must have at least one prime in it, so the volume (length*width*height) must be the product of at least 3 primes (not necessarily distinct primes).

(1) 56 < N < 63. N could be 57, 58, 59, 60, 61, or 62. Analyze each case:

57=3*19 --> just two primes. Discard.
58=2*29 --> just two primes. Discard.
59 --> prime itself. Discard.
60=2^2*3*5 --> the product of 4 primes. OK. For example, the the length, the width and the height of the cube cold be 2, by 6, by 5.
61 --> prime itself. Discard.
62=2*31 --> just two primes. Discard.

As we can see, N can only be 60. Sufficient.

(2) N is a multiple of 3. Multiple values of N are possible so that it to be a multiple of 3 AND the product of at least 3 primes, for example 27 or 60. Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunnel,

The question says "each side of which is longer than 1 inch" so the lengths of each sides can even be "2, 2, 2, or 3,3,3" may i know why you took the lenghts as "2,3,4"

Regards
Srinath
Director
Director
avatar
Joined: 28 Jul 2011
Posts: 563
Location: United States
Concentration: International Business, General Management
GPA: 3.86
WE: Accounting (Commercial Banking)
Followers: 3

Kudos [?]: 202 [0], given: 16

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 06 Sep 2012, 17:37
Bunuel wrote:
kotela wrote:
Bunuel wrote:
Jean puts N identical cubes, the sides of which are 1 inch long, inside a rectangular box, each side of which is longer than 1 inch, such that the box is completely filled with no gaps and no cubes left over. What is N?

Notice that, since the volume of each cube is 1 inch^3, then the volume of N cubes (the volume of the rectangular box) is N inch^3. For example if there are 10 cubes, then the volume of the rectangular box (total volume of 10 cubes) is 10 inch^3. Next, we are told that the length, the width and the height of the rectangular box is longer than 1 inch and there are no gaps when all cubes are put in the box, so the length, the width and the height of the rectangular box are integers more than one: 2, 3, 4, ... Thus each dimension of the rectangular box must have at least one prime in it, so the volume (length*width*height) must be the product of at least 3 primes (not necessarily distinct primes).

(1) 56 < N < 63. N could be 57, 58, 59, 60, 61, or 62. Analyze each case:

57=3*19 --> just two primes. Discard.
58=2*29 --> just two primes. Discard.
59 --> prime itself. Discard.
60=2^2*3*5 --> the product of 4 primes. OK. For example, the the length, the width and the height of the cube cold be 2, by 6, by 5.
61 --> prime itself. Discard.
62=2*31 --> just two primes. Discard.

As we can see, N can only be 60. Sufficient.

(2) N is a multiple of 3. Multiple values of N are possible so that it to be a multiple of 3 AND the product of at least 3 primes, for example 27 or 60. Not sufficient.

Answer: A.

Hope it's clear.


Hi Bunnel,

The question says "each side of which is longer than 1 inch" so the lengths of each sides can even be "2, 2, 2, or 3,3,3" may i know why you took the lenghts as "2,3,4"

Regards
Srinath


I said that "the length, the width and the height of the rectangular box are integers more than one: 2, 3, 4, ... " So, yes, each dimension can be 2 or 3, for example .


Thanks Bunnel got it....
_________________

+1 Kudos If found helpful..

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12904
Followers: 562

Kudos [?]: 158 [0], given: 0

Premium Member
Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 09 Aug 2014, 12:06
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12904
Followers: 562

Kudos [?]: 158 [0], given: 0

Premium Member
Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 09 Sep 2015, 22:51
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Expert Post
VP
VP
User avatar
Joined: 08 Jul 2010
Posts: 1432
Location: India
GMAT: INSIGHT
WE: Education (Education)
Followers: 65

Kudos [?]: 1343 [0], given: 42

Re: Jean puts N identical cubes, the sides of which are 1 inch [#permalink]

Show Tags

New post 09 Nov 2016, 23:52
carcass wrote:
Jean puts N identical cubes, the sides of which are 1 inch long, inside a rectangular box, each side of which is longer than 1 inch, such that the box is completely filled with no gaps and no cubes left over. What is N?

(1) 56 < N < 63
(2) N is a multiple of 3.

[Reveal] Spoiler:
In the explanation of this problem I can't figure out why " To be able to put N cubes into a rectangular box with no gaps and no left-over cubes, you must have the following equality: N = length × width × height. Moreover, if the length, width, and height are all greater than 1, then it must be true that N is the product of at least 3 primes. If N is itself prime or the product of just 2 primes (unique or not), then the condition fails.

So you can rephrase the question this way: is N the product of at least 3 primes?
"

Can you help me ?? the key of this problem is just this process of thought.......:(

Thanks


Answer: Option A

Please check the explanation in attachment
Attachments

File comment: www.GMATinsight.com
5.jpg
5.jpg [ 127.01 KiB | Viewed 120 times ]


_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com
Call us : +91-9999687183 / 9891333772
http://www.GMATinsight.com/testimonials.html



Feel free to give a Kudos if it is a useful post .

Re: Jean puts N identical cubes, the sides of which are 1 inch   [#permalink] 09 Nov 2016, 23:52
    Similar topics Author Replies Last post
Similar
Topics:
1 Experts publish their posts in the topic What is the length of a side of a certain cube? Bunuel 1 25 Jul 2016, 09:16
11 Experts publish their posts in the topic An oddly shaped die has N sides, numbered from 1 to N, that are equall Bunuel 11 18 Mar 2015, 04:13
1 Experts publish their posts in the topic In triangle ABC, side AB is 5 inches and side BC is 7 inches. What is Jackal 2 05 Nov 2014, 06:53
16 A cube is made up of equal smaller cubes. Two of the sides SravnaTestPrep 9 19 Mar 2013, 22:17
2 Square ABCD has an area of 9 square inches. Sides AD and BC venmic 5 31 Jul 2012, 19:11
Display posts from previous: Sort by

Jean puts N identical cubes, the sides of which are 1 inch

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.