Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Jeff is painting two murals on the front of an old apartment [#permalink]

Show Tags

28 Apr 2006, 19:56

2

This post received KUDOS

18

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

26% (02:21) correct
74% (01:39) wrong based on 426 sessions

HideShow timer Statistics

Attachment:

Untitled.png [ 4.82 KiB | Viewed 5649 times ]

Jeff is painting two murals on the front of an old apartment building that he is renovating. One mural will cover the quadrilateral face ABCD while the other will cover the circular face (shown to the right, with radius XY). Assuming that the thickness of the coats of paint is negligible, will each mural require the same amount of paint? Note: Figures are not drawn to scale.

Hence the Area = AB^2 == Area of the circle (pi*XY^2).

From B. You could have multiple quadirlaterals!

If the two diagnals are perpendicular, then the given equation could be used to determine (the quad will then be a square or a kite). But since nothing is provided abt their angle of intersection, we cannot assume that.

1. ABCD could be square or a rhombus.
If ABCD is a square, then area of Circle = area of ABCD
If ABCD is a rhombus with sat 60-120-60-120 degress,
Area of ABCD < AB^2 = XY^*pi
INSUFF

2. AC = BD = XY*SQRT(2pi).
ABCD could be a rectangle or a square or a rhombus.
IF ABCD is a rectangle, Area of ABCD is smaller than the area of the Circle
If ABCD is a square, both areas are equal.
Rhombus.. unequal.

Combine (1) & (2), ABCD has to be a square with the same area as that of the circle.
_________________

"To dream anything that you want to dream, that is the beauty of the human mind. To do anything that you want to do, that is the strength of the human will. To trust yourself, to test your limits, that is the courage to succeed."

Hence the Area = AB^2 == Area of the circle (pi*XY^2).

From B. You could have multiple quadirlaterals!

If the two diagnals are perpendicular, then the given equation could be used to determine (the quad will then be a square or a kite). But since nothing is provided abt their angle of intersection, we cannot assume that.

Hence, A remains!

Whats the OA?

it's quadirlaterals not square... it can be rhombus!

1. ABCD could be square or a rhombus. If ABCD is a square, then area of Circle = area of ABCD If ABCD is a rhombus with sat 60-120-60-120 degress, Area of ABCD < AB^2 = XY^*pi INSUFF

2. AC = BD = XY*SQRT(2pi). ABCD could be a rectangle or a square or a rhombus. IF ABCD is a rectangle, Area of ABCD is smaller than the area of the Circle If ABCD is a square, both areas are equal. Rhombus.. unequal.

Combine (1) & (2), ABCD has to be a square with the same area as that of the circle.

for 2 AC=BD can not be rhombus, rhombus has equal sides not diagonal!

for 2 AC=BD can not be rhombus, rhombus has equal sides not diagonal!

Oops... take out rhombus. Still it can be a rectangle or square. Hence B is INSUFF?
_________________

"To dream anything that you want to dream, that is the beauty of the human mind. To do anything that you want to do, that is the strength of the human will. To trust yourself, to test your limits, that is the courage to succeed."

C is the correct answer, the only reason I have this question is following explaination

"
Statement 2 tells us that the diagonals are equal--thus telling us that ABCD has right angle corners (The only way for a quadrilateral to have equal diagonals is if its corners are 90 degrees.) Statement 2 also gives us a numerical relationship between the diagonal of ABCD and the radius of the circle. If we assume that ABCD is a square, this relationship would allow us to determine that the area of the square and the area of the circle are equal. However, once again, we cannot assume that ABCD is a square."

The only way for a quadrilateral to have equal diagonals is if its corners are 90 degrees.

I can not really visualize this! Can any one show me the light?

The only way for a quadrilateral to have equal diagonals is if its corners are 90 degrees. I can not really visualize this! Can any one show me the light?

chiragr-buddy,
I think there is no light to show here.. There was a blackout in Manhattan when this question was created and explained by 99%tile students
They probably didn't know that a regular trapezium also has equal diagonals. If the diagonals are equal and also bisect each other, then the corners have to be 90 degrees.

Still it's a very good question. We should remember that Sides equal => the quadrilateral could be a nice Square or an ugly Rhombus!
_________________

"To dream anything that you want to dream, that is the beauty of the human mind. To do anything that you want to do, that is the strength of the human will. To trust yourself, to test your limits, that is the courage to succeed."

Re: Jeff is painting two murals on the front of an old apartment [#permalink]

Show Tags

27 Apr 2014, 10:08

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Jeff is painting two murals on the front of an old apartment [#permalink]

Show Tags

01 Jul 2015, 21:40

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Jeff is painting two murals on the front of an old apartment [#permalink]

Show Tags

05 Jul 2016, 02:01

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Jeff is painting two murals on the front of an old apartment [#permalink]

Show Tags

29 Aug 2016, 20:05

giddi77 wrote:

Is it C?

1. ABCD could be square or a rhombus. If ABCD is a square, then area of Circle = area of ABCD If ABCD is a rhombus with sat 60-120-60-120 degress, Area of ABCD < AB^2 = XY^*pi INSUFF

2. AC = BD = XY*SQRT(2pi). ABCD could be a rectangle or a square or a rhombus. IF ABCD is a rectangle, Area of ABCD is smaller than the area of the Circle If ABCD is a square, both areas are equal. Rhombus.. unequal.

Combine (1) & (2), ABCD has to be a square with the same area as that of the circle.

If the diagonals are equal it cant be a rhombus. It would be either a square or a rectangle.

Re: Jeff is painting two murals on the front of an old apartment [#permalink]

Show Tags

01 Jan 2017, 03:09

St1 - ABCD is a rhombus. If it were a square, the condition would have implied paint is equal coz area would be equal. However, we dont know that. All we know is its a rhombus, and the area of the rhombus could be anything relative to the circle depending on the ratio of its diagonal to its side -> INSUFF

St2 - ABCD is a ||m. Again, a parallelogram has area = base x height. But we only know info about diagonals. In other words, for the same length of diagonals, you could have infinitely many areas of ||ms - so not enough info - INSUFF

Both combined - we know sides of ABCD are equal and so are the diagonals. Ratio of diagonal to side is sqrt(2) -> This means that ABCD is now a square. In this case area = piXY^2 = area of circle

Thus answer is C
_________________

Thanks & Regards, Anaira Mitch

gmatclubot

Re: Jeff is painting two murals on the front of an old apartment
[#permalink]
01 Jan 2017, 03:09

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...