Find all School-related info fast with the new School-Specific MBA Forum

It is currently 29 Jul 2015, 12:03
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Jim needs to mix a solution in the following ratio: 1 part

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
User avatar
Joined: 28 May 2009
Posts: 155
Location: United States
Concentration: Strategy, General Management
GMAT Date: 03-22-2013
GPA: 3.57
WE: Information Technology (Consulting)
Followers: 4

Kudos [?]: 126 [0], given: 91

GMAT ToolKit User
Jim needs to mix a solution in the following ratio: 1 part [#permalink] New post 06 Nov 2012, 12:46
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

83% (01:36) correct 17% (00:00) wrong based on 10 sessions
I can not seem grasp the reasoning behind the Answer to the below question:

Jim needs to mix a solution in the following ratio: 1 part bleach for every 4 parts water. When mixing the solution, Jim makes a mistake and mixes in half as much bleach as he ought to have. The total solution consists of 18 mL. How much did Jim put into the solution?

To solve this problem:
The ratio is 1:4, meaning there should be x parts bleach and 4x parts water. However, Jim put in half as much bleach as he should have, so he put in \(\frac{x}{2}\) parts bleach. So the equation would be:
\(\frac{x}{2} + 4x = 18\) \(=> x=4\)
This part is clear, however, according to the MGMAT Guide the correct answer is not \(4\), but it's \(\frac{4}{2}\), but we already used \(\frac{x}{2}\) in the equation.

Now, \(4(2) + 2 = 18\) which makes sense. However, my main concern is with the reasoning, that to solve the equation, we have already halved Jim's amount, and then we are halving it again. Please explain.
_________________

New to GMAT Club? Start here

Kindle Flashcards - Quant (Official Gmat Club, miguemick's Quant topics), and Verbal (Official Gmat Club) - in Kindle (azw3) format


Last edited by Bunuel on 07 Nov 2012, 01:54, edited 1 time in total.
Renamed the topic.
Manhattan GMAT Discount CodesKaplan GMAT Prep Discount CodesKnewton GMAT Discount Codes
Current Student
User avatar
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 648
Location: India
Concentration: Strategy, General Management
Schools: Olin - Wash U - Class of 2015
WE: Information Technology (Computer Software)
Followers: 40

Kudos [?]: 419 [0], given: 23

GMAT ToolKit User Premium Member
Re: Confusing Ratios question [#permalink] New post 06 Nov 2012, 19:29
megafan wrote:
I can not seem grasp the reasoning behind the Answer to the below question:

Jim needs to mix a solution in the following ratio: 1 part bleach for every 4 parts water. When mixing the solution, Jim makes a mistake and mixes in half as much bleach as he ought to have. The total solution consists of 18 mL. How much did Jim put into the solution?

To solve this problem:
The ratio is 1:4, meaning there should be x parts bleach and 4x parts water. However, Jim put in half as much bleach as he should have, so he put in \(\frac{x}{2}\) parts bleach. So the equation would be:
\(\frac{x}{2} + 4x = 18\) \(=> x=4\)
This part is clear, however, according to the MGMAT Guide the correct answer is not \(4\), but it's \(\frac{4}{2}\), but we already used \(\frac{x}{2}\) in the equation.

Now, \(4(2) + 2 = 18\) which makes sense. However, my main concern is with the reasoning, that to solve the equation, we have already halved Jim's amount, and then we are halving it again. Please explain.


if you look at the equation that you've set up. you would notice that you actually added x/2 part of bleach in 4x water not x part. Thus if x=4, the amount of bleach is x/2=4/2.
It is not x that you are looking for, but the value that you used in mixture ie x/2
_________________

Lets Kudos!!! ;-)
Black Friday Debrief

Intern
Intern
avatar
Joined: 19 Aug 2012
Posts: 18
Followers: 0

Kudos [?]: 20 [0], given: 10

Re: Confusing Ratios question [#permalink] New post 26 Nov 2012, 22:50
Vips0000 wrote:
megafan wrote:
I can not seem grasp the reasoning behind the Answer to the below question:

Jim needs to mix a solution in the following ratio: 1 part bleach for every 4 parts water. When mixing the solution, Jim makes a mistake and mixes in half as much bleach as he ought to have. The total solution consists of 18 mL. How much did Jim put into the solution?

To solve this problem:
The ratio is 1:4, meaning there should be x parts bleach and 4x parts water. However, Jim put in half as much bleach as he should have, so he put in \(\frac{x}{2}\) parts bleach. So the equation would be:
\(\frac{x}{2} + 4x = 18\) \(=> x=4\)
This part is clear, however, according to the MGMAT Guide the correct answer is not \(4\), but it's \(\frac{4}{2}\), but we already used \(\frac{x}{2}\) in the equation.

Now, \(4(2) + 2 = 18\) which makes sense. However, my main concern is with the reasoning, that to solve the equation, we have already halved Jim's amount, and then we are halving it again. Please explain.


if you look at the equation that you've set up. you would notice that you actually added x/2 part of bleach in 4x water not x part. Thus if x=4, the amount of bleach is x/2=4/2.
It is not x that you are looking for, but the value that you used in mixture ie x/2



I dont understand what you are aiming to do here.. can you please clarify your explanation??
Intern
Intern
avatar
Joined: 28 Feb 2013
Posts: 8
Location: India
Concentration: Strategy, Social Entrepreneurship
GMAT 1: 740 Q48 V42
GPA: 3.45
WE: General Management (Non-Profit and Government)
Followers: 0

Kudos [?]: 8 [0], given: 0

Re: Jim needs to mix a solution in the following ratio: 1 part [#permalink] New post 24 May 2013, 19:46
megafan wrote:
I can not seem grasp the reasoning behind the Answer to the below question:

Jim needs to mix a solution in the following ratio: 1 part bleach for every 4 parts water. When mixing the solution, Jim makes a mistake and mixes in half as much bleach as he ought to have. The total solution consists of 18 mL. How much did Jim put into the solution?

To solve this problem:
The ratio is 1:4, meaning there should be x parts bleach and 4x parts water. However, Jim put in half as much bleach as he should have, so he put in \(\frac{x}{2}\) parts bleach. So the equation would be:
\(\frac{x}{2} + 4x = 18\) \(=> x=4\)
This part is clear, however, according to the MGMAT Guide the correct answer is not \(4\), but it's \(\frac{4}{2}\), but we already used \(\frac{x}{2}\) in the equation.

Now, \(4(2) + 2 = 18\) which makes sense. However, my main concern is with the reasoning, that to solve the equation, we have already halved Jim's amount, and then we are halving it again. Please explain.


1 part bleach for every 4 parts water = 1:4
1/2 part bleach for every 4 parts water = 1/2 : 4 = 1:8

9x = 18
x = 2 <-- Answer
Current Student
avatar
Joined: 30 May 2013
Posts: 11
GMAT 1: 680 Q48 V35
Followers: 0

Kudos [?]: 2 [0], given: 2

Re: Jim needs to mix a solution in the following ratio: 1 part [#permalink] New post 06 Jun 2013, 14:30
as vy3rgc mentioned, 1/2:4 ratio is a 1:8 ratio.

I figured it out this way.
in a 10 part solution, there is 2 bleach and 8 water.
Jim only added 1/2 the amount of bleach needed so instead of 2 bleach he added 1 bleach and 8 water.
This also changes it from a 10 part mixed solution to a 9 part mixed solution.

In a 18 part solution with this mistake, he'll have 2 parts bleach and 16 parts water.
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 5680
Followers: 321

Kudos [?]: 61 [0], given: 0

Premium Member
Re: Jim needs to mix a solution in the following ratio: 1 part [#permalink] New post 07 Apr 2015, 22:32
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Expert Post
EMPOWERgmat Instructor
User avatar
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 3026
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Followers: 132

Kudos [?]: 839 [0], given: 53

Re: Jim needs to mix a solution in the following ratio: 1 part [#permalink] New post 08 Apr 2015, 22:29
Expert's post
Hi All,

While this is an old series of posts, there is a rather straight-forward way to approach this question that is more about real-world math than anything else.

The original prompt tells us that Jim needs to mix a solution in the following ratio: 1 part bleach for every 4 parts water.

So, if we have 1 part bleach + 4 parts water we get 5 parts total mixture....

Next, we're told that when mixing the solution, Jim makes a mistake and mixes in half as much bleach as he ought to have.

So, he ACTUALLY mixed 1/2 part bleach + 4 parts water and gets 4.5 parts total mixture....

The total solution consists of 18 mL. How much did Jim put into the solution?

18 = (4.5)(4) so the 18mL is made up of 4 "sets" of the 4.5 parts mixture. This means there are 4(4) = 16 mL of water and 4(1/2) = 2mL of bleach.

GMAT assassins aren't born, they're made,
Rich
_________________

Official Guide 2016 Question Breakdown:
http://gmatclub.com/forum/empowergmat-blog-198415.html#p1527977

Rich Cohen
Rich.C@empowergmat.com
http://www.empowergmat.com

GMAT Club Verified Reviews for EMPOWERgmat & Special Discount

EMPOWERgmat Podcast - A Wild Secret About The GMAT Algorithm


Re: Jim needs to mix a solution in the following ratio: 1 part   [#permalink] 08 Apr 2015, 22:29
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic Jim needs $1,000 to buy a new flat-screen TV. Since he has BugDGmat 2 09 Sep 2013, 01:29
1 Experts publish their posts in the topic John needs to mix a solution in the following ratio: 1 part megafan 2 29 Dec 2012, 12:23
35 Experts publish their posts in the topic Two kinds of Vodka are mixed in the ratio 1:2 and 2:1 and hussi9 15 19 May 2011, 23:31
Which of the following equals the ratio of to ? (A)1 : banksy 2 15 Mar 2011, 14:40
7 Experts publish their posts in the topic Two solutions of acid were mixed to obtain 10 liters of a bmwhype2 17 19 Dec 2007, 20:22
Display posts from previous: Sort by

Jim needs to mix a solution in the following ratio: 1 part

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.