Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Joanna bought only $0.15 stamps and $0.29 stamps. How many $0.15 stamps did she buy? (1) She bought $4.40 worth of stamps. (2) She bought an equal number of $0.15 stamps and $0.29 stamps.

Let \(x\) be the # of $0.15 stamps and \(y\) the # of $0.29 stamps. Note that \(x\) and \(y\) must be an integers. Q: \(x=?\)

(1) She bought $4.40 worth of stamps --> \(15x+29y=440\). Only one integer combination of \(x\) and \(y\) is possible to satisfy \(15x+29y=440\): \(x=10\) and \(y=10\). Sufficient.

(2) She bought an equal number of $0.15 stamps and $0.29 stamps --> \(x=y\). Not sufficient.

Answer: A.

So when we have equation of a type \(ax+by=c\) and we know that \(x\) and \(y\) are non-negative integers, there can be multiple solutions possible for \(x\) and \(y\) (eg \(5x+6y=60\)) OR just one combination (eg \(15x+29y=440\)). Hence in some cases \(ax+by=c\) is NOT sufficient and in some cases it is sufficient.

C is a trap. I hate these questions, because you have to work out the possibilities. Is there a simpler way to determine if (A) only has one solution? I usually just draw a little chart and start filling it in.

I guess if there is not a quicker way, at least look for which of the numbers will be easier to work with. It is a lot easier to determine if something is divisible by 15 than 29. So start with zero 29 cent stamps and subtract it from 4.40, and see if the result is divisible by 15. If you find more than one solution, stop working and look at the next statement.

start with zero 29 cent stamps and subtract it from 4.40

in this particular case, I belieeve, we can't start with zero 29 cent stamps, we should start with 1, because stimulus says Jonna bought both kind of stamps.
_________________

Bunuel,im not getting why is B insufficient. we have 15x + 29y = 440 and since x=y, we have 15x + 29x = 440 then x = 10. so y= 10. Can you please explain. Thanx in advance

Only in statement 1. You should not use the information from statement 1 unless you are considering to combine both statement 1 and statement 2 to arrive at answer C.
_________________

Bunuel,im not getting why is B insufficient. we have 15x + 29y = 440 and since x=y, we have 15x + 29x = 440 then x = 10. so y= 10. Can you please explain. Thanx in advance

As noted above by Dreamy you can not use info from statement (1) to solve statement (2), so for (2) we don't know that total $4.40 were spent.
_________________

I hate C traps!!The good news is that both statements do no contradict each other. So, I know that the 2nd statement provides a clue, even if it is not sufficient on its own. And, from the numbers given( 0.15, 0.29 and 4.40), I look for some sort of relationship among them. In this case, the number should be a multiple of 5 in order to give a 0 in 4.40. And, 0.15 + 0.29 =0.44. Sometimes the solution is so obvious that I cant see it even if it is staring straight at me....sigh..

So when we have equation of a type ax+by=c and we know that x and y are non-negative integers, there can be multiple solutions possible for x and y (eg 5x+6y=60) OR just one combination (eg 15x+29y=440). Hence in some cases ax+by=c is NOT sufficient and in some cases it is sufficient.

Is 5x+6y=60 a good example for this case? The only solutions to the above equation(considering only integers are acceptable; you cannot have 1.5 stamps) are x=0;y=10 (or) x=6;y=5. Unless I'm missing another solution. Don't you think 5x+10y=60 would be a better example to show multiple solutions. Just curious.

So when we have equation of a type ax+by=c and we know that x and y are non-negative integers, there can be multiple solutions possible for x and y (eg 5x+6y=60) OR just one combination (eg 15x+29y=440). Hence in some cases ax+by=c is NOT sufficient and in some cases it is sufficient.

Is 5x+6y=60 a good example for this case? The only solutions to the above equation(considering only integers are acceptable; you cannot have 1.5 stamps) are x=0;y=10 (or) x=6;y=5. Unless I'm missing another solution. Don't you think 5x+10y=60 would be a better example to show multiple solutions. Just curious.

First of all the example is not about stamps problem, it's a general example about Diophantine equations and yes, I think it's a good example as it has more than one integer solution.
_________________

Additionally if I have an equation ax+by = c; if the coefficients a,b are co-prime, can I be certain that there could possibly be only one combination(other than probably a or b being 0) of a,b that would solve the equation?

So when we have equation of a type ax+by=c and we know that x and y are non-negative integers, there can be multiple solutions possible for x and y (eg 5x+6y=60) OR just one combination (eg 15x+29y=440). Hence in some cases ax+by=c is NOT sufficient and in some cases it is sufficient.

Is 5x+6y=60 a good example for this case? The only solutions to the above equation(considering only integers are acceptable; you cannot have 1.5 stamps) are x=0;y=10 (or) x=6;y=5. Unless I'm missing another solution. Don't you think 5x+10y=60 would be a better example to show multiple solutions. Just curious.

First of all the example is not about stamps problem, it's a general example about Diophantine equations and yes, I think it's a good example as it has more than one integer solution.

Additionally if I have an equation ax+by = c; if the coefficients a,b are co-prime, can I be certain that there could possibly be only one combination(other than probably a or b being 0) of a,b that would solve the equation?

No, that's not generally the case. You can find very simple equations with coprime coefficients and multiple integer solutions. If you take, picking an example almost at random,

2x + 3y = 17

this will have integer solutions whenever 17-3y is even, so has positive integer solutions whenever y is odd (and small enough to make the equation work) -- that is, it has positive integer solutions when y = 1, 3 and 5.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Ian, Please correct me. In GMAT neither statements contradict. So its good idea to take the hint from 2) statement. Solve for the value of stamps using 1) and 2) x=y and 15x + 29y = 440. Hence x=y=10

Now suspect if 1) ALONE is the "credited" answer. To prove that no other solution exists just put in random integer < 10 and random integer > 10 for x, y in the equation 15x + 29y = 440. In choosing x and y, I know for sure if x > 10 then y < 10 and vice versa. If I get more than one pair of solution, the answer is C otherwise it is A.

IanStewart wrote:

No, that's not generally the case. You can find very simple equations with coprime coefficients and multiple integer solutions. If you take, picking an example almost at random,

2x + 3y = 17

this will have integer solutions whenever 17-3y is even, so has positive integer solutions whenever y is odd (and small enough to make the equation work) -- that is, it has positive integer solutions when y = 1, 3 and 5.

Ian, Please correct me. In GMAT neither statements contradict. So its good idea to take the hint from 2) statement. Solve for the value of stamps using 1) and 2) x=y and 15x + 29y = 440. Hence x=y=10

Yes, since the Statements never contradict each other, you can be sure from Statement 2 that there must be one solution where x=y, even when you only use Statement 1 alone. The only question then is whether there might be a second solution.

gmat1220 wrote:

Now suspect if 1) ALONE is the "credited" answer. To prove that no other solution exists just put in random integer < 10 and random integer > 10 for x, y in the equation 15x + 29y = 440. In choosing x and y, I know for sure if x > 10 then y < 10 and vice versa. If I get more than one pair of solution, the answer is C otherwise it is A.

No, I would not just haphazardly plug in all conceivable values of y here to see which work; that would take a long time. We have an equation involving positive integers:

15x + 29y = 440

Now, two of the numbers (15 and 440) are multiples of 5. That guarantees that the third number, 29y, is also a multiple of 5, and so y must be a multiple of 5 (if it is not immediately clear that 29y needs to be a multiple of 5 here, you can rewrite the equation as 29y = 440 - 15x = 5(88 - 3x), from which we can see that 29y is equal to a multiple of 5). Doing this you greatly cut down on the number of values you need to test; you now only need to check y= 5, 10 and 15 (since if y = 20, the sum is too large).
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Ian Your explanation almost blows me away Such a profound explanation about factors. I am lovin it ! Please have my kudos !

IanStewart wrote:

gmat1220 wrote:

Ian, Please correct me. In GMAT neither statements contradict. So its good idea to take the hint from 2) statement. Solve for the value of stamps using 1) and 2) x=y and 15x + 29y = 440. Hence x=y=10

Yes, since the Statements never contradict each other, you can be sure from Statement 2 that there must be one solution where x=y, even when you only use Statement 1 alone. The only question then is whether there might be a second solution.

gmat1220 wrote:

Now suspect if 1) ALONE is the "credited" answer. To prove that no other solution exists just put in random integer < 10 and random integer > 10 for x, y in the equation 15x + 29y = 440. In choosing x and y, I know for sure if x > 10 then y < 10 and vice versa. If I get more than one pair of solution, the answer is C otherwise it is A.

No, I would not just haphazardly plug in all conceivable values of y here to see which work; that would take a long time. We have an equation involving positive integers:

15x + 29y = 440

Now, two of the numbers (15 and 440) are multiples of 5. That guarantees that the third number, 29y, is also a multiple of 5, and so y must be a multiple of 5 (if it is not immediately clear that 29y needs to be a multiple of 5 here, you can rewrite the equation as 29y = 440 - 15x = 5(88 - 3x), from which we can see that 29y is equal to a multiple of 5). Doing this you greatly cut down on the number of values you need to test; you now only need to check y= 5, 10 and 15 (since if y = 20, the sum is too large).

Re: Joanna bought only $0.15 stamps and $0.29 stamps. How many [#permalink]

Show Tags

19 Dec 2012, 15:14

"Now, two of the numbers (15 and 440) are multiples of 5. That guarantees that the third number, 29y, is also a multiple of 5, and so y must be a multiple of 5 (if it is not immediately clear that 29y needs to be a multiple of 5 here, you can rewrite the equation as 29y = 440 - 15x = 5(88 - 3x), from which we can see that 29y is equal to a multiple of 5). Doing this you greatly cut down on the number of values you need to test; you now only need to check y= 5, 10 and 15 (since if y = 20, the sum is too large)."

Re: Joanna bought only $0.15 stamps and $0.29 stamps. How many [#permalink]

Show Tags

07 Feb 2013, 11:56

1

This post received KUDOS

Hi,

just saw this very useful information in a MGMAT explanation.

In order to prove that no other pair exists, you could figure out what number of stamps are required to do a TRADE between the $0.15 and $0.29 stamps. You would need to trade 29 of the $0.15 stamps against 15 of the $0.29 stamps. Hence you need at least either 30 of the $0.15 stamps or 16 of the $0.29 stamps to be able to do a trade, because according to the statment Joanna buys at least one of each stamp.

To further illustrate this, let's assume Joanna bought $8.80 worth of stamps. Then she could have bought 20 of each of the stamps. (20 * $0.15) + (20 * $0.29) = $8.80 Furthermore you could trade 15 of the $0.29 stamps against 29 of the $0.15 stamps. [(20 + 29) * $0.15] + [(20 - 15) * $0.29] = $8.80

Since the amount of $4.40 limits the number of stamps to 10 each, there is no trade possible and therefore you don't need to do further tests.

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...