Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Joshua and Jose work at an auto repair center with 4 other [#permalink]
27 Jun 2006, 21:20

1

This post received KUDOS

1

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

5% (low)

Question Stats:

73% (01:51) correct
27% (01:11) wrong based on 213 sessions

Joshua and Jose work at an auto repair center with 4 other workers. For a survey on health care insurance, 2 of the 6 workers will be randomly chosen to be interviewed. What is the probability that Joshua and Jose will both be chosen?

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
27 Jun 2006, 23:28

4

This post received KUDOS

3

This post was BOOKMARKED

Two Methods

1) Probability of chosing Josh first = 1/6
Probability of chosing Jose second = 1/5
total = 1/30
Probability of chosing Jose first = 1/6
Probability of chosing Josh second = 1/5
Total = 1/30
Final = 1/30 + 1/30 = 1/15

2) Number of ways two persons can be chosen 6C2 = 15
Number of ways Josh and Jose are the two persons = 1
Total = 1/15

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
13 Jul 2014, 19:23

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
13 Jul 2014, 21:57

Total ways of choosing two people out of 6 = 6c2=15. And out of these 15 cases there is only one case in which Joshua and Jose both are selected. hence 1/15 is the probability.

The other 14 cases would be : When Joshua is selected and one person out of the other four (excluding Jose) is selected. 1x4c1=4 cases. When Jose is selected and one person out of the other four (excluding Joshua) is selected. 1x4c1=4 cases. When none of Joshua and Jose is selected. 4c2=6 cases. This adds up to 4+4+6=14 cases.

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
07 Sep 2014, 11:06

aiming700plus wrote:

Joshua and Jose work at an auto repair center with 4 other workers. For a survey on health care insurance, 2 of the 6 workers will be randomly chosen to be interviewed. What is the probability that Joshua and Jose will both be chosen?

A. 1/15 B. 1/12 C. 1/9 D. 1/6 E. 1/3

I am not able to solve this questions with below method:

probability of not choosing both of them (probability of choose 2 from other members) = 4C2/6C2 = 6/15=2/5

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
07 Sep 2014, 11:13

2

This post received KUDOS

Expert's post

email2vm wrote:

aiming700plus wrote:

Joshua and Jose work at an auto repair center with 4 other workers. For a survey on health care insurance, 2 of the 6 workers will be randomly chosen to be interviewed. What is the probability that Joshua and Jose will both be chosen?

A. 1/15 B. 1/12 C. 1/9 D. 1/6 E. 1/3

I am not able to solve this questions with below method:

probability of not choosing both of them (probability of choose 2 from other members) = 4C2/6C2 = 6/15=2/5

probability required = 1-2/5 = 3/5

Where am I doing wrong?

Regards, Ravi

You should also subtract committees with Joshua but not Jose and the committees with Jose but not Joshua. _________________

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
07 Sep 2014, 11:36

Bunuel wrote:

email2vm wrote:

aiming700plus wrote:

Joshua and Jose work at an auto repair center with 4 other workers. For a survey on health care insurance, 2 of the 6 workers will be randomly chosen to be interviewed. What is the probability that Joshua and Jose will both be chosen?

A. 1/15 B. 1/12 C. 1/9 D. 1/6 E. 1/3

I am not able to solve this questions with below method:

probability of not choosing both of them (probability of choose 2 from other members) = 4C2/6C2 = 6/15=2/5

probability required = 1-2/5 = 3/5

Where am I doing wrong?

Regards, Ravi

You should also subtract committees with Joshua but not Jose and the committees with Jose but not Joshua.

Hmmm...silly again.

Only Joshua but not jose probability = 4/15 only jose but not joshua = 4/15

I went for a simpler approach and although I get the right answer, I'm not sure if it is correct. Here is how I went about it:

Since the question is only concerned about Josh and Jose, the probability that either one of them is chosen first is: 2/6 After the first is chosen, there are 5 people left, out if which one is either Josh or Jose. Probability of getting them is then: 1/5

So, (2/6)*(1/5)= 1/15

Is this a right approach for this question? To me this seems so much more straightforward...Thoughts? Suggestions?

I went for a simpler approach and although I get the right answer, I'm not sure if it is correct. Here is how I went about it:

Since the question is only concerned about Josh and Jose, the probability that either one of them is chosen first is: 2/6 After the first is chosen, there are 5 people left, out if which one is either Josh or Jose. Probability of getting them is then: 1/5

So, (2/6)*(1/5)= 1/15

Is this a right approach for this question? To me this seems so much more straightforward...Thoughts? Suggestions?

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
14 Oct 2014, 11:46

I am not able to solve this questions with below method:

probability of not choosing both of them (probability of choose 2 from other members) = 4C2/6C2 = 6/15=2/5

probability required = 1-2/5 = 3/5

Where am I doing wrong?

Regards, Ravi[/quote]

You should also subtract committees with Joshua but not Jose and the committees with Jose but not Joshua.[/quote]

Hmmm...silly again.

Only Joshua but not jose probability = 4/15 only jose but not joshua = 4/15

2/5 +4/15+4/15= 14/15

so actual probabilty required is 1-14/15 = 1/15

Cheers Bunuel!![/quote] I'm afraid I don't get the red part: only joshua and not jose: 1/6 * 4/5 = 4/30 =2/15. Do we now multiply by 2 because you can pick them in two ways (pick anyone but jose first and pick joshua second) ?

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
15 Oct 2014, 10:49

usre123 wrote:

I am not able to solve this questions with below method:

probability of not choosing both of them (probability of choose 2 from other members) = 4C2/6C2 = 6/15=2/5

probability required = 1-2/5 = 3/5

Where am I doing wrong?

Regards, Ravi

You should also subtract committees with Joshua but not Jose and the committees with Jose but not Joshua.[/quote]

Hmmm...silly again.

Only Joshua but not jose probability = 4/15 only jose but not joshua = 4/15

2/5 +4/15+4/15= 14/15

so actual probabilty required is 1-14/15 = 1/15

Cheers Bunuel!![/quote] I'm afraid I don't get the red part: only joshua and not jose: 1/6 * 4/5 = 4/30 =2/15. Do we now multiply by 2 because you can pick them in two ways (pick anyone but jose first and pick joshua second) ?[/quote]

===================== A> Only Joshua(Jh) and !Jose(Jo)

so we have Joshua + Any of the (A,B,C,D)= (Jh,A) or (Jh,B) or (Jh,C) or (Jh,D) ------>[or simply we can write it as 4c1 since we have Jh already and we have to choose one from other 4]

4c1/6c2

B> Only Jo and !Jh

same 4c1/6c2

final answer =

1- (probabilty of not choosing both of them)- probability of choosing Jh but !Jo - Probability of choosing Jo but !Jh.

This is bulky and I was just checking if things would work this way...simple way is

there can only be one set with both Jo and Jh and total number of ways choosing 2 from 6 is 6c2 = 15

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
15 Oct 2014, 12:57

email2vm wrote:

usre123 wrote:

I am not able to solve this questions with below method:

probability of not choosing both of them (probability of choose 2 from other members) = 4C2/6C2 = 6/15=2/5

probability required = 1-2/5 = 3/5

Where am I doing wrong?

Regards, Ravi

You should also subtract committees with Joshua but not Jose and the committees with Jose but not Joshua.

Hmmm...silly again.

Only Joshua but not jose probability = 4/15 only jose but not joshua = 4/15

2/5 +4/15+4/15= 14/15

so actual probabilty required is 1-14/15 = 1/15

Cheers Bunuel!![/quote] I'm afraid I don't get the red part: only joshua and not jose: 1/6 * 4/5 = 4/30 =2/15. Do we now multiply by 2 because you can pick them in two ways (pick anyone but jose first and pick joshua second) ?[/quote]

===================== A> Only Joshua(Jh) and !Jose(Jo)

so we have Joshua + Any of the (A,B,C,D)= (Jh,A) or (Jh,B) or (Jh,C) or (Jh,D) ------>[or simply we can write it as 4c1 since we have Jh already and we have to choose one from other 4]

4c1/6c2

B> Only Jo and !Jh

same 4c1/6c2

final answer =

1- (probabilty of not choosing both of them)- probability of choosing Jh but !Jo - Probability of choosing Jo but !Jh.

This is bulky and I was just checking if things would work this way...simple way is

there can only be one set with both Jo and Jh and total number of ways choosing 2 from 6 is 6c2 = 15

therefore probability is 1/15 [/quote]

Got it thanks. but what is wrong with my logic? if you could help, that'll be great. It'll help me conceptually.

Re: Joshua and Jose work at an auto repair center with 4 other [#permalink]
31 Mar 2015, 01:30

Expert's post

aiming700plus wrote:

Joshua and Jose work at an auto repair center with 4 other workers. For a survey on health care insurance, 2 of the 6 workers will be randomly chosen to be interviewed. What is the probability that Joshua and Jose will both be chosen?

A. 1/15 B. 1/12 C. 1/9 D. 1/6 E. 1/3

No. of ways in which Joshua and Jose can be chosen out of 2 people = 2C2 = 1 No. of ways in which Joshua and Jose can be chosen out of 6 people = 6C2 = 15 Required probability = 1/15

Hello everyone! Researching, networking, and understanding the “feel” for a school are all part of the essential journey to a top MBA. Wouldn’t it be great... ...

Are you interested in applying to business school? If you are seeking advice about the admissions process, such as how to select your targeted schools, then send your questions...

A lot of readers have asked me what benefits the Duke MBA has brought me. The MBA is a huge upfront investment and the opportunity cost is high. Most...