Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Dec 2014, 01:58

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Juan and his five friends will sit on six fixed seats around

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Senior Manager
Senior Manager
avatar
Joined: 18 Aug 2009
Posts: 437
Schools: UT at Austin, Indiana State University, UC at Berkeley
WE 1: 5.5
WE 2: 5.5
WE 3: 6.0
Followers: 6

Kudos [?]: 61 [0], given: 16

Juan and his five friends will sit on six fixed seats around [#permalink] New post 22 Sep 2009, 19:13
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

60% (02:24) correct 40% (01:07) wrong based on 128 sessions
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120
[Reveal] Spoiler: OA

_________________

Never give up,,,

Senior Manager
Senior Manager
avatar
Joined: 31 Aug 2009
Posts: 422
Location: Sydney, Australia
Followers: 6

Kudos [?]: 126 [0], given: 20

Re: GMAT Combinatorics 4 [#permalink] New post 22 Sep 2009, 20:13
1
This post was
BOOKMARKED
J = Juan, F = Jamal
Since J is always fixed, set J, set F relative to J, then see how many options there are:
J F 4 3 2 1 = 24 or
F J 4 3 2 1 = 24

24+24=48 … C
Senior Manager
Senior Manager
User avatar
Status: mba here i come!
Joined: 07 Aug 2011
Posts: 271
Location: Pakistan
Concentration: Strategy, Marketing
GMAT 1: 680 Q46 V37
GMAT 2: Q V
Followers: 27

Kudos [?]: 745 [0], given: 48

GMAT ToolKit User
Re: GMAT Combinatorics 4 [#permalink] New post 26 Feb 2012, 13:17
count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c
_________________

press +1 Kudos to appreciate posts
Download Valuable Collection of Percentage Questions (PS/DS)

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24609
Followers: 3808

Kudos [?]: 32887 [2] , given: 3580

Re: GMAT Combinatorics 4 [#permalink] New post 26 Feb 2012, 13:27
2
This post received
KUDOS
Expert's post
MBAhereIcome wrote:
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120

count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c


2*3! = 12 not 48, also there are total of 6 people so without Juan and Jamal there are 4 left not 3.

As the Juan's seat is fixed and Jamal must sit next to him then they can be seated only in 2 ways: {Juan}{Jamal} or {Jamal}{Juan}. Other 4 friends can be seated in 4! ways, so total 2*4!=48.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Senior Manager
Senior Manager
avatar
Joined: 16 Feb 2012
Posts: 259
Concentration: Finance, Economics
Followers: 4

Kudos [?]: 90 [0], given: 121

GMAT ToolKit User
Re: GMAT Combinatorics 4 [#permalink] New post 26 Feb 2012, 16:43
Bunuel wrote:
MBAhereIcome wrote:
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120

count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c


2*3! = 12 not 48, also there are total of 6 people so without Juan and Jamal there are 4 left not 3.

As the Juan's seat is fixed and Jamal must sit next to him then they can be seated only in 2 ways: {Juan}{Jamal} or {Jamal}{Juan}. Other 4 friends can be seated in 4! ways, so total 2*4!=48.




Isn't the result 24?! Juan must sit on the seat closest to the window and cannot swap his seat with Jamal because if they swap seats Juan won't be closest to the window (which is a must). The others can sit in 4! ways.
_________________

Kudos if you like the post!

Failing to plan is planning to fail.

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24609
Followers: 3808

Kudos [?]: 32887 [0], given: 3580

Re: GMAT Combinatorics 4 [#permalink] New post 26 Feb 2012, 16:46
Expert's post
Stiv wrote:
Bunuel wrote:
MBAhereIcome wrote:
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120

count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c


2*3! = 12 not 48, also there are total of 6 people so without Juan and Jamal there are 4 left not 3.

As the Juan's seat is fixed and Jamal must sit next to him then they can be seated only in 2 ways: {Juan}{Jamal} or {Jamal}{Juan}. Other 4 friends can be seated in 4! ways, so total 2*4!=48.




Isn't the result 24?! Juan must sit on the seat closest to the window and cannot swap his seat with Jamal because if they swap seats Juan won't be closest to the window (which is a must). The others can sit in 4! ways.


Juan's seat is fixed, yes. But Jamal can be to the right of him or to the left.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1997
Concentration: Finance
GMAT 1: 710 Q48 V39
Followers: 20

Kudos [?]: 247 [0], given: 351

GMAT ToolKit User
Re: GMAT Combinatorics 4 [#permalink] New post 10 Dec 2013, 13:08
What about the fact that the table is circular? Don't we need to use the formula (n-1)! say instead of 4! we would have 3!?

Thanks

Cheers!
J :)
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24609
Followers: 3808

Kudos [?]: 32887 [1] , given: 3580

Re: GMAT Combinatorics 4 [#permalink] New post 11 Dec 2013, 01:48
1
This post received
KUDOS
Expert's post
jlgdr wrote:
What about the fact that the table is circular? Don't we need to use the formula (n-1)! say instead of 4! we would have 3!?

Thanks

Cheers!
J :)


Since Juan's seat is fixed, then circular arrangement is not applicable here. You see, since Juan's seat is fixed, the number of arrangements of four friends (except Jamal) is 4! irrespective whether they are in front of Juan or in circle with him.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Intern
Intern
User avatar
Joined: 19 Mar 2013
Posts: 17
Followers: 0

Kudos [?]: 2 [0], given: 24

CAT Tests
Re: GMAT Combinatorics 4 [#permalink] New post 12 Dec 2013, 04:20
answering the question about (n-1)! formula

consider Juan and Jamal as one unit (as they always sit at adjacent places), as if we had 5 people altogether. using the formula for circular arrangement (n-1)! we have (5-1)!, and then multiplying the result be 2! to take into account arrangements inside our unit Juan+Jamal
Intern
Intern
avatar
Joined: 05 Feb 2014
Posts: 48
Followers: 0

Kudos [?]: 7 [0], given: 49

Re: GMAT Combinatorics 4 [#permalink] New post 08 May 2014, 05:12
Bunuel wrote:
MBAhereIcome wrote:
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120

count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c


2*3! = 12 not 48, also there are total of 6 people so without Juan and Jamal there are 4 left not 3.

As the Juan's seat is fixed and Jamal must sit next to him then they can be seated only in 2 ways: {Juan}{Jamal} or {Jamal}{Juan}. Other 4 friends can be seated in 4! ways, so total 2*4!=48.



Hi Bunuel, could you please explain why do we multiply by 2 in the following 2*4! (its 4! because we are considering Juan and jamal as 1 so thats fine).

Really bad with combinations and probability :(
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24609
Followers: 3808

Kudos [?]: 32887 [0], given: 3580

Re: GMAT Combinatorics 4 [#permalink] New post 08 May 2014, 06:40
Expert's post
gauravsoni wrote:
Bunuel wrote:
MBAhereIcome wrote:
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120

count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c


2*3! = 12 not 48, also there are total of 6 people so without Juan and Jamal there are 4 left not 3.

As the Juan's seat is fixed and Jamal must sit next to him then they can be seated only in 2 ways: {Juan}{Jamal} or {Jamal}{Juan}. Other 4 friends can be seated in 4! ways, so total 2*4!=48.



Hi Bunuel, could you please explain why do we multiply by 2 in the following 2*4! (its 4! because we are considering Juan and jamal as 1 so thats fine).

Really bad with combinations and probability :(


Those two cane be arranged either {Juan}{Jamal} or {Jamal}{Juan}. For each of these arrangements the remaining 4 can be seated in 4!, so total is 2*4!.

Does this make sense?

Theory on Combinations: math-combinatorics-87345.html

DS questions on Combinations: search.php?search_id=tag&tag_id=31
PS questions on Combinations: search.php?search_id=tag&tag_id=52

Tough and tricky questions on Combinations: hardest-area-questions-probability-and-combinations-101361.html

Theory on probability problems: math-probability-87244.html

All DS probability problems to practice: search.php?search_id=tag&tag_id=33
All PS probability problems to practice: search.php?search_id=tag&tag_id=54

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Intern
Intern
avatar
Joined: 05 Feb 2014
Posts: 48
Followers: 0

Kudos [?]: 7 [0], given: 49

Re: GMAT Combinatorics 4 [#permalink] New post 08 May 2014, 10:28
gauravsoni wrote:
Bunuel wrote:
MBAhereIcome wrote:
Juan and his five friends will sit on six fixed seats around a circular table. If Juan must sit on the seat closest to the window and Jamal must sit next to Juan, in how many can Juan and his five friends sit?

(A) 20
(B) 24
(C) 48
(D) 72
(E) 120

count juan and jamal as one member that sits on a fixed chair. now we are left with 3 more members who can sit in 3! ways.
jamal can sit on either side of juan so total combinations = 2*3! = 48

ans: c


2*3! = 12 not 48, also there are total of 6 people so without Juan and Jamal there are 4 left not 3.

As the Juan's seat is fixed and Jamal must sit next to him then they can be seated only in 2 ways: {Juan}{Jamal} or {Jamal}{Juan}. Other 4 friends can be seated in 4! ways, so total 2*4!=48.



Hi Bunuel, could you please explain why do we multiply by 2 in the following 2*4! (its 4! because we are considering Juan and jamal as 1 so thats fine).

Really bad with combinations and probability :(


Those two cane be arranged either {Juan}{Jamal} or {Jamal}{Juan}. For each of these arrangements the remaining 4 can be seated in 4!, so total is 2*4!.

Does this make sense?

Theory on Combinations: math-combinatorics-87345.html

DS questions on Combinations: search.php?search_id=tag&tag_id=31
PS questions on Combinations: search.php?search_id=tag&tag_id=52

Tough and tricky questions on Combinations: hardest-area-questions-probability-and-combinations-101361.html

Theory on probability problems: math-probability-87244.html

All DS probability problems to practice: search.php?search_id=tag&tag_id=33
All PS probability problems to practice: search.php?search_id=tag&tag_id=54
[/quote]


Thanks Bunuel , been doing combinations and probability since morning. Finally getting a hang of it :) . Thanks for the links
Re: GMAT Combinatorics 4   [#permalink] 08 May 2014, 10:28
    Similar topics Author Replies Last post
Similar
Topics:
2 Experts publish their posts in the topic How many ways could three people sit at a table with five seats in whi Bunuel 3 08 Dec 2014, 05:24
1 Experts publish their posts in the topic How many ways can six friends be arranged around a circular dinner tab portfolio1 1 08 Dec 2014, 04:24
1 Experts publish their posts in the topic A group of six friends sit together and form a circle. They praffulpatel 1 14 Oct 2013, 06:05
11 Experts publish their posts in the topic Seven men and five women have to sit around a circular table jakolik 28 28 Jul 2010, 18:53
1 Randomly, six people A, B, C, D, E, and F sit around a rkatl 9 24 Sep 2006, 07:26
Display posts from previous: Sort by

Juan and his five friends will sit on six fixed seats around

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.