Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

K and L are each four-digit positive integers with thousands [#permalink]
15 Nov 2009, 11:58

2

This post received KUDOS

2

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

35% (medium)

Question Stats:

72% (02:55) correct
28% (02:21) wrong based on 112 sessions

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as 5^a*2^b*7^c*3^d ÷ 5^p*2^q*7^r*3^s. The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

Re: Number Properties [#permalink]
15 Nov 2009, 12:24

4

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

ctrlaltdel wrote:

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as 5^a*2^b*7^c*3^d ÷ 5^p*2^q*7^r*3^s. The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

Re: Number Properties [#permalink]
15 Nov 2009, 16:54

Expert's post

flgators519 wrote:

where did the 400 come from? Thanks

We got that in two 4 digit numbers abcd and pqrs all numbers except b and q are the same and b-q=4. abcd=1000a+100b+10c+d and pqrs=1000p+100q+10r+s. abcd-pqrs=1000a+100b+10c+d-(1000p+100q+10r+s) as a=p, c=r and d=s, we'll get 100b-100q=(b-q)*100=4*100=400.

Re: Number Properties [#permalink]
15 Nov 2009, 16:57

1

This post received KUDOS

Bunuel wrote:

ctrlaltdel wrote:

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as 5^a*2^b*7^c*3^d ÷ 5^p*2^q*7^r*3^s. The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

Re: Functions - concepts testing [#permalink]
03 Mar 2010, 03:35

1

This post received KUDOS

D

Again, I think my way is kinda slow but here goes:

K = 1000a + 100b + 10c + d L = 1000p + 100q + 10r + s

W = (5^a 2^b 7^c 3^d)/(5^p 2^q 7^r 3^s) = 16 W = 5^(a-p) 2^(b-q) 7^(c-r) 3(d-s) = 16

Next you do a prime factorisation of 16 and get 2^4 Thus, we know that 2 is the only prime factor of 16, and since the other numbers in W are also prime, we can deduce the following: a-p = 0 b-q = 4 c-r = 0 d-s = 0

Keeping the statements above in mind, when we evaluate K-L we get: (100b-100q)/10 = Z (100(b-q))/10 = Z (100*4)/10 = Z = 40

Re: K and L are each four-digit positive integers with thousands [#permalink]
09 Nov 2013, 18:53

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.

Re: K and L are each four-digit positive integers with thousands [#permalink]
30 Dec 2013, 12:41

ctrlaltdel wrote:

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as 5^a*2^b*7^c*3^d ÷ 5^p*2^q*7^r*3^s. The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.