Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Let D be a recurring decimal of the form D=0.a1 a2 a1 a2.... [#permalink]

Show Tags

16 Dec 2007, 01:28

4

This post received KUDOS

19

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

60% (02:20) correct
40% (01:53) wrong based on 201 sessions

HideShow timer Statistics

Let D be a recurring decimal of the form D=0.a1 a2 a1 a2...., where digits a1 and a2 lie between 0 and 9. Further, at most one of them is zero. Which of the following numbers necessarily produces an integer, when multiplied by D?

Let D be a recurring decimal of the form D=0.a1 a2 a1 a2...., where digits a1 and a2 lie between 0 and 9. Further, at most one of them is zero. Which of the following numbers necessarily produces an integer, when multiplied by D?

a) 18 b) 108 c) 198 d) 288 e) 158

Please explain your answer

Walker u r ridiculous! so good at these.

Anyway, i remembered that 90/99=.90909090909090....

so one of the integers must be divisble by 9 and 11.

I, too, would be very curious in knowning the source of this question.
Does someone has idea if the real GMAT could give questions of a similar difficulty?
It seemes VERY STRANGE to me that GMAT would want you to remember that formula of the summatory.

Let D be a recurring decimal of the form D=0.a1 a2 a1 a2...., where digits a1 and a2 lie between 0 and 9. Further, at most one of them is zero. Which of the following numbers necessarily produces an integer, when multiplied by D?

a) 18 b) 108 c) 198 d) 288 e) 158

Please explain your answer

For those who dont want to be troubled by the Geometric Series and its formula, here is a short-cut to remember:
any recurring decimal with 'n' recurring digits can be written as: A/B
A = the n recurring digits
B = 10^n - 1

I, too, would be very curious in knowning the source of this question. Does someone has idea if the real GMAT could give questions of a similar difficulty? It seemes VERY STRANGE to me that GMAT would want you to remember that formula of the summatory.

Re: Let D be a recurring decimal of the form D=0.a1 a2 a1 a2.... [#permalink]

Show Tags

17 Aug 2013, 10:29

tarek99 wrote:

Let D be a recurring decimal of the form D=0.a1 a2 a1 a2...., where digits a1 and a2 lie between 0 and 9. Further, at most one of them is zero. Which of the following numbers necessarily produces an integer, when multiplied by D?

a) 18 b) 108 c) 198 d) 288 e) 158

0.123412341234.................... = 1234/9999

0.34343434........................... = 34/99

0.543543543543..................... = 543/999

so, 0.a1a2a1a2a1a2a1a2................ = a1a2/99 and 198 is a multiple of 99 . so Answer is (C)
_________________

Re: Let D be a recurring decimal of the form D=0.a1 a2 a1 a2.... [#permalink]

Show Tags

21 Aug 2014, 12:01

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Let D be a recurring decimal of the form D=0.a1 a2 a1 a2.... [#permalink]

Show Tags

05 Sep 2015, 05:15

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Let D be a recurring decimal of the form D=0.a1 a2 a1 a2.... [#permalink]

Show Tags

28 Sep 2016, 13:07

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...