Find all School-related info fast with the new School-Specific MBA Forum

It is currently 11 Jul 2014, 05:43

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Lists S and T consist of the same number of positive integer

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Senior Manager
Senior Manager
avatar
Joined: 12 Mar 2009
Posts: 318
Followers: 1

Kudos [?]: 32 [0], given: 1

GMAT ToolKit User GMAT Tests User
Lists S and T consist of the same number of positive integer [#permalink] New post 10 May 2009, 11:12
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

58% (02:34) correct 41% (01:19) wrong based on 92 sessions
Lists S and T consist of the same number of positive integers. Is the median of the integers in S greater than the average (arithmetic mean) of the integers in T?

(1) The integers in S are consecutive even integers, and the integers in T are consecutive odd integers.
(2) The sum of the integers in S is greater than the sum of the integers in T.
[Reveal] Spoiler: OA

Last edited by Bunuel on 04 Jun 2013, 03:47, edited 1 time in total.
Edited the question and added the OA
Senior Manager
Senior Manager
avatar
Joined: 16 Apr 2009
Posts: 252
Schools: Ross
Followers: 1

Kudos [?]: 17 [0], given: 10

GMAT Tests User
Re: Mean and median of sets.. please help [#permalink] New post 11 May 2009, 12:00
vaivish1723 wrote:
Lists S and T consist of the same number of positive integers, Is the median of S is greater than mean of T?

1. S is consecutive even integers and T is consecutive odd integers.
2. The sum of S is greater than sum of T.

Please help.


We'll use simple sets of 5 numbers (once we find out both conditions):

S: [E, E+2, E+4, E+6, E+8] - we want median from Set S
T: [O, O+2, O+4, O+6, O+8] - we want mean from Set T

(1) Clearly not enough; 1 set could start with very small numbers & the other very big (& vice versa);
(2) If we don't know statement 1, we can pick any numbers for both sets, and adjust each's mean & median to whatever we want, also not enough.

(combined): We can make a few sets using both conditions combined:

i.e. S: [2, 4, 6, 8, 10]; T: [1, 3, 5, 7, 9] Median of S = 6, mean of T = 5; in this case, answer - yes.
S: [2, 4, 6, 8]; T: [1, 3, 5, 7] Median of S = 5, mean of T = 4; yes again.
S: [2, 4, 6]; T: [1, 3, 5] Median of S = 4, mean of T = 3; yes

So, now we can pretty much be sure we can answer this question reliably; so answer (C).

---------------
My opinion:
It can be
S: [2, 4, 6, 8]; T: [1, 3, 5, 7]
or

S: [ 6, 8,9,10]; T: [1, 3, 5, 7] too
As the question states only about the same number of positive integers and the Stat(1) says S is consecutive even integers and T is consecutive odd integers.does that mean both S and T should be consecutive?---hence I would go with 'E'.

Correct me ,if I am wrong.
_________________

Keep trying no matter how hard it seems, it will get easier.

Senior Manager
Senior Manager
avatar
Joined: 16 Apr 2009
Posts: 252
Schools: Ross
Followers: 1

Kudos [?]: 17 [0], given: 10

GMAT Tests User
Re: Mean and median of sets.. please help [#permalink] New post 11 May 2009, 12:28
Quote:
---------------
My opinion:
It can be
S: [2, 4, 6, 8]; T: [1, 3, 5, 7]
or

S: [2, 4, 6, 8]; T: [7,9, 11, 13] too as the question states only about the same number of positive integers---hence I would go with 'E'.

Correct me ,if I am wrong.


Under the second condition, the sum of S must be greater than the sum of T, therefore the sets above do not qualify.


S: [ 6, 8,10,12]; T: [1, 3, 5, 7]

If this is the case,what would be the answer?
Will the answer be E?
_________________

Keep trying no matter how hard it seems, it will get easier.

Senior Manager
Senior Manager
avatar
Joined: 08 Jan 2009
Posts: 332
Followers: 2

Kudos [?]: 62 [0], given: 5

GMAT Tests User
Re: Mean and median of sets.. please help [#permalink] New post 17 May 2009, 23:35
S and T have the same number of integers say n . Is Median of S > Median of T?

1. S is consecutive even integers and T is consecutive odd integers.
So S could be 2,4,6 or 111112,1111114.
So Insufficient.
2. The sum of S is greater than sum of T.
If the sets are equally spaced then, Mean = Median. sum of S > sum of T
then (sum of S)/n > (sum of T)/n
If the set are not, Then S = (1,1,1,1,1) T=(-1,-2,1,2,3) here sum of S > sum of T but Median of S = Median of T

Together

Yes we know S and T are equally sapced. So as seen in Statement two yes. So Ans . C
Intern
Intern
avatar
Joined: 08 Jul 2009
Posts: 28
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Mean and median of sets.. please help [#permalink] New post 13 Oct 2009, 03:57
This can be solved the following ( Hope it is right) without pluging numbers.

First: it is given that the two sets have same number of elements

Stmt 1: Since each set has consecutive numbers then for each set the median will equal the mean.
That's for odd and even consecutive sets.
Ex: S { 1,2,3,4} mean= 2,5. Median = 2,5
T{ 1,2,3,4,5} mean = 3 and Median= 3
however it is Ins. since it gives us nothing else to help in determining the requested

Stmt 2: since the sum of the first set is bigger than the second, it means the first has bigger mean however nothing is given about the median..

Together, yes
the set with bigger mean has bigger median and that's applicable on set 2..

:) please correct me if there's anything wrong
Senior Manager
Senior Manager
avatar
Joined: 03 Nov 2005
Posts: 399
Location: Chicago, IL
Followers: 3

Kudos [?]: 25 [0], given: 17

GMAT Tests User
Re: Mean and median of sets.. please help [#permalink] New post 13 Oct 2009, 20:23
vaivish1723 wrote:
Lists S and T consist of the same number of positive integers, Is the median of S is greater than mean of T?

1. S is consecutive even integers and T is consecutive odd integers.
2. The sum of S is greater than sum of T.

Please help.



ST. (1) two possible scenarios

S{2,4,6} and T{1,3,5}

or S{2,4,6} and T{3,5,7} both satsify the conditions under statement (1). So, st. 1 is insufficient.


ST. (2) (insufficient)

Look at the examples

1. S{1,3,5} and t{0,0,8)
and S(10,40,60), while T{ 0, 45, 54}. St. 2 is also insufficient.

Combining ST 1 and St. 2, we can conclude that the median of S is greater thean the mean of T.
_________________

Hard work is the main determinant of success

Intern
Intern
avatar
Joined: 01 Sep 2009
Posts: 34
Followers: 0

Kudos [?]: 2 [0], given: 4

Re: Mean and median of sets.. please help [#permalink] New post 14 Oct 2009, 11:50
C

Median = Mean for consec odd/even #s

If sum of S is greater than sum of T, then median and mean of S are greater than median and mean of T
Director
Director
User avatar
Joined: 24 Aug 2007
Posts: 956
WE 1: 3.5 yrs IT
WE 2: 2.5 yrs Retail chain
Followers: 51

Kudos [?]: 660 [0], given: 40

GMAT Tests User
Re: Mean and median of sets.. please help [#permalink] New post 15 Apr 2010, 04:55
vannu wrote:
vaivish1723 wrote:
Lists S and T consist of the same number of positive integers, Is the median of S is greater than mean of T?

1. S is consecutive even integers and T is consecutive odd integers.
2. The sum of S is greater than sum of T.

Please help.


We'll use simple sets of 5 numbers (once we find out both conditions):

S: [E, E+2, E+4, E+6, E+8] - we want median from Set S
T: [O, O+2, O+4, O+6, O+8] - we want mean from Set T

(1) Clearly not enough; 1 set could start with very small numbers & the other very big (& vice versa);
(2) If we don't know statement 1, we can pick any numbers for both sets, and adjust each's mean & median to whatever we want, also not enough.

(combined): We can make a few sets using both conditions combined:

i.e. S: [2, 4, 6, 8, 10]; T: [1, 3, 5, 7, 9] Median of S = 6, mean of T = 5; in this case, answer - yes.
S: [2, 4, 6, 8]; T: [1, 3, 5, 7] Median of S = 5, mean of T = 4; yes again.
S: [2, 4, 6]; T: [1, 3, 5] Median of S = 4, mean of T = 3; yes

So, now we can pretty much be sure we can answer this question reliably; so answer (C).

---------------
My opinion:
It can be
S: [2, 4, 6, 8]; T: [1, 3, 5, 7]
or

S: [ 6, 8,9,10]; T: [1, 3, 5, 7] too
As the question states only about the same number of positive integers and the Stat(1) says S is consecutive even integers and T is consecutive odd integers.does that mean both S and T should be consecutive?---hence I would go with 'E'.

Correct me ,if I am wrong.


I think if u opted for E then u r write.
My opinion:
It can be
S: [2, 4, 6, 8]; T: [1, 3, 5, 7] - Median can be 4 or 6 which is still insufficient
or

S: [ 6, 8,9,10]; T: [1, 3, 5, 7] Yes Median (S) > Avg (T)
We dont know the number of elements in two set. If the number of elements is odd then yes we can find the relationship by combining both 1 and 2 statements while if it is even then we cant. So, E must be OA.

In either case the Median of set S will be more than avg of set T.
_________________

Want to improve your CR: cr-methods-an-approach-to-find-the-best-answers-93146.html
Tricky Quant problems: 50-tricky-questions-92834.html
Important Grammer Fundamentals: key-fundamentals-of-grammer-our-crucial-learnings-on-sc-93659.html

Manager
Manager
User avatar
Status: I am Midnight's Child !
Joined: 04 Dec 2009
Posts: 148
WE 1: Software Design and Development
Followers: 1

Kudos [?]: 24 [0], given: 11

Re: Mean and median of sets.. please help [#permalink] New post 17 Feb 2011, 11:49
ykaiim wrote:
I think if u opted for E then u r write.
My opinion:
It can be
S: [2, 4, 6, 8]; T: [1, 3, 5, 7] - Median can be 4 or 6 which is still insufficient
or

S: [ 6, 8,9,10]; T: [1, 3, 5, 7] Yes Median (S) > Avg (T)
We dont know the number of elements in two set. If the number of elements is odd then yes we can find the relationship by combining both 1 and 2 statements while if it is even then we cant. So, E must be OA.

In either case the Median of set S will be more than avg of set T.


S: [2, 4, 6, 8] - Median = (4+6)/2 = 5
T: [1, 3, 5, 7] - Mean = (1+7)/2 = 4

Hence, here also Median of S > Mean of T .

So, Answer should be C only.
_________________

Argument : If you love long trips, you love the GMAT.
Conclusion : GMAT is long journey.

What does the author assume ?
Assumption : A long journey is a long trip.


Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18492
Followers: 3188

Kudos [?]: 21239 [2] , given: 2537

Re: Mean and median of sets.. please help [#permalink] New post 17 Feb 2011, 12:22
2
This post received
KUDOS
Expert's post
Original question is:

Lists S and T consist of the same number of positive integers. Is the median of the integers in S greater than the average (arithmetic mean) of the integers in T?

Q: is Median\{S\}>Mean\{T\}? Given: {# of terms in S}={# of terms in T}, let's say N.

(1) The integers in S are consecutive even integers, and the integers in T are consecutive odd integers.

From this statement we can derive that as set S and set T are evenly spaced their medians equal to their means. So from this statement question becomes is Mean\{S\}>Mean\{T\}? But this statement is clearly insufficient. As we can have set S{2,4,6} and set T{21,23,25} OR S{20,22,24} and T{1,3,5}.

(2) The sum of the integers in S is greater than the sum of the integers in T.

Sum\{S\}>Sum\{T\}. Also insufficient. As we can have set S{1,1,10} (Median{S}=1) and set T{3,3,3} (Mean{T}=3) OR S{20,20,20} (Median{S}=20) and T{1,1,1} (Mean{T}=1).

(1)+(2) From (1) question became is Mean\{S\}>Mean\{T\}? --> As there are equal # of term in sets and mean(average)=(Sum of terms)/(# of terms), then we have: is \frac{Sum\{S\}}{N}>\frac{Sum\{T\}}{N} true? --> Is Sum\{S\}>Sum\{T\}? This is exactly what is said in statement (2) that Sum\{S\}>Sum\{T\}. Hence sufficient.

Answer: C.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

SVP
SVP
avatar
Joined: 16 Nov 2010
Posts: 1692
Location: United States (IN)
Concentration: Strategy, Technology
Followers: 30

Kudos [?]: 272 [0], given: 36

GMAT Tests User Premium Member Reviews Badge
Re: Mean and median of sets.. please help [#permalink] New post 17 Feb 2011, 22:13
From 1 we can two sets as :
-6 -4 -2 ---- 2 4 6 - {S}

-5 -3 -1 ---- 1 3 5 - {T}


From 2 we can have two sets as :

1 1 1 22 25 --------- 5 5 5 5 5 - {S}

1 1 3 4 5 -------- 1 1 1 1 1 - {T}

So insufficient


From 1 and 2, sufficient, so C.
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Joined: 29 Nov 2012
Posts: 930
Followers: 11

Kudos [?]: 207 [0], given: 543

Re: Lists S and T consist of the same number of positive integer [#permalink] New post 29 Jul 2013, 05:01
Lists S and T consist of the same number of positive integers. Is the median of the integers in S greater than the average (arithmetic mean) of the integers in T?

(1) The integers in S are consecutive even integers, and the integers in T are consecutive odd integers.
(2) The sum of the integers in S is greater than the sum of the integers in T.

So as per the translation of this statement ( in red) it means that the set could be Random example irrespective of the statements would be T(-1,-2,-3,-4, 5,6,7) S( -2,-3,-4,1,2,3)

It doesn't mean all of them are positive right?
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Re: Lists S and T consist of the same number of positive integer   [#permalink] 29 Jul 2013, 05:01
    Similar topics Author Replies Last post
Similar
Topics:
6 Experts publish their posts in the topic Lists S and T consist of the same number of positive vaivish1723 6 17 Jan 2010, 09:45
1 Lists S and T consist of the same numer of positive TheBigCheese 5 12 Jul 2008, 06:40
Lists S and T consist of the same number of positive goalsnr 2 10 Jul 2008, 22:48
Experts publish their posts in the topic A list consists of n consecutive positive integers. n=? (1) rainmaker 1 10 Apr 2008, 22:01
4 Experts publish their posts in the topic Lists S and T consist of the same number of positive GGUY 2 23 Jan 2008, 03:14
Display posts from previous: Sort by

Lists S and T consist of the same number of positive integer

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.