Barkatis wrote:

Thanks for answering.

I got that part but my question is how do we know that the probability given is that Mike wins ONCE BEN HAS LOST.

What is the difference between that problem and this one for example

Xavier, Yvonne, and Zelda each try independently to solve a problem. If their individual probabilities for success are 1/4 ,1/2 , and 5/8 , respectively, what is the probability that Xavier and Yvonne, but not Zelda, will solve the problem ?

Where the solution is 3/8*1/2*1/4 = 3/64

But if we assume that the probability given are those of success of one person while the two others are loosing it would be more : 1/4*1/2 . Right ?

I hope you got my problem better now.

You have to be careful about reading the wording. In the example you are giving, there are 3 people solving a question. None, one or more could solve it correctly. In the question at hand, there are 3 players trying to win a tournament. Either none of them or atmost one of them can win, and simultaneous winning is not possible.

Now whether we have the probability of Mike winning given Ben has lost or we have absolute probability of Mike winning is just how the question is worded.

If Ben were to lose the championship, Mike would be the winner with a probability of \frac{1}{4}

_________________

Math write-ups

1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings