Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Jul 2014, 10:51

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

M09 Q11

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
Intern
Intern
avatar
Joined: 13 Oct 2008
Posts: 16
Followers: 0

Kudos [?]: 7 [0], given: 0

M09 Q11 [#permalink] New post 19 Nov 2008, 06:03
2
This post was
BOOKMARKED
The bowl contains green and blue chips. What is the probability of drawing a blue chip in two successive trials if the chip drawn in the first trial is not returned to the bowl before the second trial?

1. The ratio of blue chips to green chips is 3:4
2. There are 5 more green chips than blue chips

REVISED VERSION OF THIS QUESTION IS HERE: m09-q11-73062.html#p1212687

Source: GMAT Club Tests - hardest GMAT questions

[Reveal] Spoiler:
soln::
-----
S1 is not sufficient. Although we know the probability that the first chip will be blue, we cannot compute the probability that the second chip will be blue. We need to evaluate the ratio of blue chips to green chips after the first trial and S1 does not supply this information.

S2 is not sufficient either. We don't even know if this difference of 5 is significant or not.

From S1 and S2 taken together the exact number of green and blue chips in the bowl can be determined:

From this system and . This information completely defines the contents of the bowl and thus the question can be answered.

The correct answer is C.

-------
but from s1. we already know it is in the ratio of 3:4 -
So, first blue chip is 3/7 and second one is in the ratio of 2/6.. right ??

why do we need to figure out the exact number ? :?
Kaplan GMAT Prep Discount CodesKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
9 KUDOS received
CIO
CIO
avatar
Joined: 02 Oct 2007
Posts: 1218
Followers: 87

Kudos [?]: 630 [9] , given: 334

GMAT ToolKit User GMAT Tests User
Re: M09 Q11 [#permalink] New post 20 Nov 2008, 07:56
9
This post received
KUDOS
From S1 we only know the ratio of blue chips to green chips. We don't know the exact number of respective chips. The number of blue and green chips can vary greatly as long as the ratio requirement is met:
3 blue and 4 green
6 blue and 8 green
30 blue and 40 green
...

Even if the probability of drawing a blue chip during the first trial is the same for all these examples, the probability of doing the same during the second trial is different for each of the examples:
\frac{2}{6}

\frac{5}{13}

\frac{29}{69}

...

Hope this helps.

_________________

Welcome to GMAT Club! :)
Facebook TwitterGoogle+LinkedIn
Want to solve GMAT questions on the go? GMAT Club iPhone app will help.
Please read this before posting in GMAT Club Tests forum
Result correlation between real GMAT and GMAT Club Tests
Are GMAT Club Test sets ordered in any way?

Take 15 free tests with questions from GMAT Club, Knewton, Manhattan GMAT, and Veritas.

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 12 Jul 2009
Posts: 13
Followers: 0

Kudos [?]: 2 [0], given: 2

Re: M09 Q11 [#permalink] New post 07 Apr 2010, 10:20
Completely agree with dzyubam.
The absolute values with matter here, especially with the second trial.
1 KUDOS received
Intern
Intern
avatar
Joined: 09 Nov 2009
Posts: 9
Followers: 0

Kudos [?]: 2 [1] , given: 0

Re: M09 Q11 [#permalink] New post 07 Apr 2010, 10:35
1
This post received
KUDOS
x -> nr of blue, y -> nr of green

x/y = 3/4 & y-x = 5 =>
y/x = 4/3 => (y-x)/x = (4-3)/3 => 5/x = 1/3 => x = 15 => y = 20

P1(b) = 15/35 = 3/7
P2(b) = 14/34 = 7/17

P1,2(b) = 3/7∙7/17 = 3/17
Manager
Manager
User avatar
Joined: 02 Nov 2009
Posts: 95
Location: VA
Schools: Columbia Business School '13
WE 1: Investment Banking
WE 2: Higher Education
Followers: 2

Kudos [?]: 43 [0], given: 7

Re: M09 Q11 [#permalink] New post 10 Apr 2010, 10:17
Great clarification dzyubam. My first reaction was the same as mbaobsessed. i figured that if the probability of the first event was 3/7, then next would be 2/6. Your example is very helpful to illustrate why you can't solve A alone. Thanks.

_________________

My GMAT Debrief: my-gmat-experience-540-to-92850.html
Every man I meet is my superior in some way. In that, I learn of him. - Emerson

Intern
Intern
avatar
Joined: 06 Apr 2011
Posts: 46
Followers: 0

Kudos [?]: 4 [0], given: 4

GMAT ToolKit User CAT Tests
Re: M09 Q11 [#permalink] New post 11 Apr 2011, 10:05
ykpgal wrote:
x -> nr of blue, y -> nr of green

x/y = 3/4 & y-x = 5 =>
y/x = 4/3 => (y-x)/x = (4-3)/3 => 5/x = 1/3 => x = 15 => y = 20

P1(b) = 15/35 = 3/7
P2(b) = 14/34 = 7/17

P1,2(b) = 3/7∙7/17 = 3/17


x -> nr of blue, y -> nr of green
x/y = 3/4 & y-x = 5 =>
y/x = 4/3 => (y-x)/x = (4-3)/3 => 5/x = 1/3 => x = 15 => y = 20


For consecutive ratios, if we just multiply the ratios with the difference in actual values, we will get the actual value....

Eg. Ratio is 3:4 and the difference is 5. Just multiply the ratios by the difference. 3x5 and 4x5 => Actual values are 15 and 20.

Ratio 6:5, and the difference in the actual values is say 7, the values are 42 and 35

Last edited by mniyer on 11 Apr 2011, 18:03, edited 1 time in total.
1 KUDOS received
SVP
SVP
avatar
Joined: 16 Nov 2010
Posts: 1692
Location: United States (IN)
Concentration: Strategy, Technology
Followers: 30

Kudos [?]: 275 [1] , given: 36

GMAT Tests User Premium Member Reviews Badge
Re: M09 Q11 [#permalink] New post 11 Apr 2011, 18:02
1
This post received
KUDOS
As per (1)

Blue chips = 3x

Green chips = 4x

Probability = 3x/7x * (3x - 1)/(7x - 1)

Not Sufficient.

As per (2)

G = B + 5

Probability = B/(2B + 5) * (B-1)/(2B + 4)

Not Sufficient.

(1) and (2)

4x = 3x + 5

=> x = 5

So Probability = 3/7 * 14/34

= 3/17

Answer - C

_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Joined: 01 Feb 2011
Posts: 770
Followers: 14

Kudos [?]: 80 [0], given: 42

GMAT Tests User
Re: M09 Q11 [#permalink] New post 15 Apr 2011, 15:14
With out knowing number of blue chips, we cannot calculate probability of drawing a blue chip.

1. Not sufficient as we don't know number of blue chips.

2.Not sufficient as we don't know number of blue chips

Together, sufficient enough to find number of blue chips and drawing blue chip probability .

Answer is C.

Posted from my mobile device Image
Intern
Intern
avatar
Status: Perseverance
Joined: 04 Jun 2011
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: M09 Q11 [#permalink] New post 29 Jun 2011, 02:20
subhashghosh wrote:
As per (1)

Blue chips = 3x

Green chips = 4x

Probability = 3x/7x * (3x - 1)/(7x - 1)

Not Sufficient.

As per (2)

G = B + 5

Probability = B/(2B + 5) * (B-1)/(2B + 4)

Not Sufficient.

(1) and (2)

4x = 3x + 5

=> x = 5

So Probability = 3/7 * 14/34

= 3/17

Answer - C


Subaash, I liked your approach. Thanks
1 KUDOS received
Manager
Manager
avatar
Joined: 14 Mar 2011
Posts: 88
Followers: 1

Kudos [?]: 15 [1] , given: 21

Re: M09 Q11 [#permalink] New post 05 Sep 2011, 00:45
1
This post received
KUDOS
Good concept .. Thanks everyone
Manager
Manager
avatar
Status: I will not stop until i realise my goal which is my dream too
Joined: 25 Feb 2010
Posts: 235
Schools: Johnson '15
Followers: 2

Kudos [?]: 20 [0], given: 16

GMAT Tests User
Re: M09 Q11 [#permalink] New post 13 Apr 2012, 05:44
mbaobsessed wrote:
The bowl contains green and blue chips. What is the probability of drawing a blue chip in two successive trials if the chip drawn in the first trial is not returned to the bowl before the second trial?

1. The ratio of blue chips to green chips is 3:4
2. There are 5 more green chips than blue chips

[Reveal] Spoiler: OA
C

Source: GMAT Club Tests - hardest GMAT questions

soln::
-----
S1 is not sufficient. Although we know the probability that the first chip will be blue, we cannot compute the probability that the second chip will be blue. We need to evaluate the ratio of blue chips to green chips after the first trial and S1 does not supply this information.

S2 is not sufficient either. We don't even know if this difference of 5 is significant or not.

From S1 and S2 taken together the exact number of green and blue chips in the bowl can be determined:

From this system and . This information completely defines the contents of the bowl and thus the question can be answered.

The correct answer is C.

-------
but from s1. we already know it is in the ratio of 3:4 -
So, first blue chip is 3/7 and second one is in the ratio of 2/6.. right ??

why do we need to figure out the exact number ? :?


first time, i understood something of a probabality problem and the answer is C

_________________

Regards,
Harsha

Note: Give me kudos if my approach is right , else help me understand where i am missing.. I want to bell the GMAT Cat ;)

Satyameva Jayate - Truth alone triumphs

Intern
Intern
avatar
Joined: 11 Jan 2012
Posts: 23
Followers: 0

Kudos [?]: 5 [0], given: 14

Re: M09 Q11 [#permalink] New post 13 Apr 2012, 11:45
C

1)Ratios are never really gud enough to find probability. Check with some values that are in ratio 3:4 . A is out
2) In this we have B and G = B+5 we can deduce the probability in terms of B. But we dont know the value of B

use B/B+5 = 3/4

and u r done
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18703
Followers: 3236

Kudos [?]: 22272 [0], given: 2610

Re: M09 Q11 [#permalink] New post 16 Apr 2013, 04:24
Expert's post
BELOW IS REVISED VERSION OF THIS QUESTION:

A bowl contains green and blue chips only. If two chips are drawn from the bowl (without replacement) what is the probability that both chips will be blue?

(1) The ratio of blue chips to green chips is 3:4 --> if B=3 and G=4 then P=\frac{3}{7}*\frac{2}{6} but if B=6 and G=8 then P=\frac{6}{15}*\frac{5}{13}. Two different answers, hence not sufficient.

(2) There are 5 more green chips than blue chips --> G=B+5. Clearly insufficient.

(1)+(2) B:G=3:4 and G=B+5 --> B=15 and G=20. Sufficient.

Answer: C.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 16 Dec 2011
Posts: 453
Followers: 9

Kudos [?]: 138 [0], given: 70

Re: M09 Q11 [#permalink] New post 16 Apr 2013, 06:16
Original question is not clear -- question may ask either "drawing at least one blue chip" or "drawing two blue chips" in two successive draws. However, for both the cases, logic will be the same and answer also will be the same as it is DS question.

1. To find the probability, we need the number of chips; only proportion does not give the answer.
Insufficient.

2. Number of chips is not known.
Insufficient.

1 + 2: Number of blue chips = 15 and number of green chips = 20.
--> It is possible to find the probability.
Sufficient.

Answer is C.
Intern
Intern
avatar
Joined: 28 Nov 2012
Posts: 5
Followers: 0

Kudos [?]: 1 [0], given: 1

Re: M09 Q11 [#permalink] New post 16 Apr 2013, 08:36
Niether 1 nor 2 alone is sufficient...
Combining 1 & 2:

B/G=3/4
G=B+5
2 equations, 2 variables...sufficient..Hence C is the correct answer.
Manager
Manager
avatar
Joined: 18 Jan 2012
Posts: 51
Location: United States
Followers: 3

Kudos [?]: 72 [0], given: 24

Re: M09 Q11 [#permalink] New post 16 Apr 2013, 09:15
Deceptive little question bugger :-)
At the first look, one might feel that the knowledge of the ratio of the number of Green to Blue chips is sufficient to calculate the probability that is being asked. Let's go down this rabbit hole for a second...

Blue Chips : Green Chips = 3 : 4
Lets convert the ratios into absolutes.
Let # of Blue Chips = 3x
Let # of Green Chips = 4x
Total # of Chips = 7x


Probability of picking up 2 Blue chips in successive attempts = P (Blue in first attempt) * P(Blue in second attempt ).

[*]Probability (Blue in first attempt) = 3x/7x
[*]After the first attempt, the total # of blue chips = 3x - 1
[*]After the first attempt, the total # of chips = 7x - 1

Probability of picking up blue chip in the second attempt : ( 3x-1)/(7x-1)
Required probability of picking up two successive blue chips = (3x/7x) * (3x-1)/(7x-1)

No matter what we do, we cannot eliminate the "x".
Hence (A) is not sufficient

The key take away from this question is that, given the ratio of the number of Green : Blue chips, , we can always find out the probability of picking either colored chip in the first attempt.
However, the probability of picking up the second chip - be it blue or green - cannot be determined

_________________

-----------------------------------------------------------------------------------------------------
IT TAKES QUITE A BIT OF TIME AND TO POST DETAILED RESPONSES.
YOUR KUDOS IS VERY MUCH APPRECIATED

-----------------------------------------------------------------------------------------------------

Manager
Manager
avatar
Joined: 18 Jan 2012
Posts: 51
Location: United States
Followers: 3

Kudos [?]: 72 [0], given: 24

Re: M09 Q11 [#permalink] New post 16 Apr 2013, 09:17
rajcools wrote:
C

1)Ratios are never really gud enough to find probability. Check with some values that are in ratio 3:4 . A is out
2) In this we have B and G = B+5 we can deduce the probability in terms of B. But we dont know the value of B

use B/B+5 = 3/4

and u r done


Your first statement " Ratios are never really gud enough to find probability" is not completely accurate. Ratios are sufficient, PROVIDED we are asked to find out the
probability of picking up either a green or a blue chip in the FIRST attempt.

_________________

-----------------------------------------------------------------------------------------------------
IT TAKES QUITE A BIT OF TIME AND TO POST DETAILED RESPONSES.
YOUR KUDOS IS VERY MUCH APPRECIATED

-----------------------------------------------------------------------------------------------------

Intern
Intern
User avatar
Joined: 11 Apr 2013
Posts: 34
GMAT 1: 720 Q47 V42
GMAT 2: 770 Q48 V48
GPA: 3.49
WE: Military Officer (Military & Defense)
Followers: 0

Kudos [?]: 3 [0], given: 3

Re: M09 Q11 [#permalink] New post 16 Apr 2013, 21:04
lot's of great algebra here, but if the hangup for people is wrapping your head around the insufficiency of statement one, I think picking test numbers is the easiest way. Any two sets of test numbers will bear out the insufficiency of this statement

that's how I did it anyway. Surely there's some other people out there like me whose vision starts to blur when they see 8 lines of algebraic expressions. It's probably better to be able to be comfortable with solving this algebraically, but get by however you can I say

_________________

:: My test experience ::
http://gmatclub.com/forum/540-to-720-a-debrief-154257.html

\sqrt{scott}

Manager
Manager
User avatar
Joined: 15 Aug 2012
Posts: 97
Location: India
Concentration: Technology, Strategy
Schools: Merage '15 (A)
GPA: 3.6
WE: Consulting (Computer Software)
Followers: 0

Kudos [?]: 26 [0], given: 13

Re: M09 Q11 [#permalink] New post 17 Apr 2013, 04:41
The bowl contains green and blue chips. What is the probability of drawing a blue chip in two successive trials if the chip drawn in the first trial is not returned to the bowl before the second trial?

1. The ratio of blue chips to green chips is 3:4
2. There are 5 more green chips than blue chips


For Case 1:
B:G = 3:4
So B = 3 and G = 4 => 2 successive = 3/7 * 2/6.....1
OR B = 6 and G = 8 => 2 successive = 6/14 * 4 *13....2

1 and 2 are not equal Hence Not Sufficient

For Case 2:
B = 2 and G = 7 => 2 successive = 2/9 * 1/8....1
OR B = 3 and G = 8 => 2 successive = 3/11 * 2/10....2

1 and 2 are not equal Hence Not Sufficient


Combining Case 1 and 2:
B = 15 and G = 20
we get a fixed answer for this condition

Hence C
Re: M09 Q11   [#permalink] 17 Apr 2013, 04:41
    Similar topics Author Replies Last post
Similar
Topics:
1 M09 #23 sharmar 6 19 Nov 2008, 09:17
9 Experts publish their posts in the topic M09 Q16 mbaobsessed 18 19 Nov 2008, 06:07
m09 #34 ritula 6 10 Nov 2008, 03:10
14 Experts publish their posts in the topic M09 #20 ritula 19 10 Nov 2008, 02:24
10 Experts publish their posts in the topic m09 q22 CrushTheGMAT 41 07 Sep 2008, 12:18
Display posts from previous: Sort by

M09 Q11

  Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: Bunuel, WoundedTiger



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.