Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Jul 2014, 12:55

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

m25 q.3

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
2 KUDOS received
Intern
Intern
avatar
Joined: 17 Feb 2008
Posts: 29
Followers: 0

Kudos [?]: 10 [2] , given: 5

m25 q.3 [#permalink] New post 21 Feb 2009, 15:34
2
This post received
KUDOS
3
This post was
BOOKMARKED
4 professors and 6 students are being considered for membership on a supervisory committee which must consist of 3 people. In how many ways can this committee be formed if it has to include at least 1 professor?

(A) 36
(B) 60
(C) 72
(D) 80
(E) 100

[Reveal] Spoiler: OA
E

Source: GMAT Club Tests - hardest GMAT questions

The best way to approach this problem is to consider an unconstrained version of the question first: how many committees of 3 are possible? The answer is C_{10}^3 = \frac{10!}{(7!3!)} = 120 . From this figure we have to subtract the number of committees that consist entirely of students i.e. C_{6}^3 = \frac{6!}{(3!3!)} = 20 . The final answer is C_{10}^3 - C_6^3 = 120 - 20 = 100 .
The correct answer is E.
--------------------------------------------------------------------------------
I don't understand why we only subtract from the students only here? As first we take all the possible comibinations then minus just by if all the seats were to be filled by students only?? Why wont this only leave combinations of seat that will will be filled by just professors then? Dont understand the answer can someone please dumb it down to explain to me, many thanks JF.
Kaplan Promo CodeKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
6 KUDOS received
Manager
Manager
avatar
Joined: 26 Nov 2009
Posts: 178
Followers: 3

Kudos [?]: 53 [6] , given: 5

GMAT ToolKit User GMAT Tests User
Re: m25 q.3 [#permalink] New post 05 Jan 2010, 07:11
6
This post received
KUDOS
there are 3 possibilities

i) all 3 professors
4c3 = 4
ii)2 professors & 1 student
4c2 * 6c1 = 6 *6 = 36
iii)1 professor & 2 strudent
4c1 * 6c2 = 4*15 =60

total possibilities = 4+36+60=100

so my choice is E
4 KUDOS received
Manager
Manager
avatar
Joined: 23 Nov 2009
Posts: 55
Followers: 1

Kudos [?]: 11 [4] , given: 1

Re: m25 q.3 [#permalink] New post 05 Jan 2010, 15:37
4
This post received
KUDOS
Answer is E.
100.
Break this down to:
4C3 (All professors)+
6C2 * 4C1 (2 students + 1 professor)+
6C1*4C2 (2 professors + 1 student)
=4+60+36 = 100

_________________

A kudos would greatly help :)

Tuhin

2 KUDOS received
Manager
Manager
User avatar
Status: Its Wow or Never
Joined: 11 Dec 2009
Posts: 208
Location: India
Concentration: Technology, Strategy
GMAT 1: 670 Q47 V35
GMAT 2: 710 Q48 V40
WE: Information Technology (Computer Software)
Followers: 5

Kudos [?]: 41 [2] , given: 7

GMAT Tests User
Re: m25 q.3 [#permalink] New post 05 Jan 2010, 05:42
2
This post received
KUDOS
--------------------------------------------------------------------------------
I don't understand why we only subtract from the students only here? As first we take all the possible comibinations then minus just by if all the seats were to be filled by students only?? Why wont this only leave combinations of seat that will will be filled by just professors then? Dont understand the answer can someone please dumb it down to explain to me, many thanks JF.[/quote]

a simple approach is as follows:

There are
4P(professors) and 6S(Students)

A committee of 3 is to be chosen with at least 1 prof.
meaning:Committee can have (1P,2S) or (2P,1S) or (3P)---at least meaning 1 and more than 1...obv there cant more than 3 members in the commitee..
now calculating..
(1P,2S) - C(4,1)*C(6,2) =60
(2P,1S) - C(4,2)*C(6,1) =36
(3P) -C(4,3) =4

Add all the above(bcos all of the above are not possible simultaneously but only one of them at a time) and u get 100.

Happy to help!!

_________________

---------------------------------------------------------------------------------------
If you think you can,you can
If you think you can't,you are right.

2 KUDOS received
Intern
Intern
avatar
Joined: 30 Jul 2009
Posts: 20
Followers: 0

Kudos [?]: 4 [2] , given: 3

Re: m25 q.3 [#permalink] New post 05 Jan 2010, 08:07
2
This post received
KUDOS
There are 3 cases here (Because it says at least 1 professor):
1st Case: Choose only 1 professor and 2 student:
4c1 * 6c2= 60
2nd case: Choose 2 professors and 1 student:
4c2 * 6c1 = 36
3rd case: Choose 3 professors:
4c3 = 4

all added up: 60+36+4=100
correct ans is E
1 KUDOS received
Intern
Intern
avatar
Joined: 15 Dec 2008
Posts: 37
Followers: 1

Kudos [?]: 14 [1] , given: 0

Re: m25 q.3 [#permalink] New post 22 Feb 2009, 12:43
1
This post received
KUDOS
Here we subtract only those cases in which the committee has only student members because the question says "In how many ways can this committee be formed if it has to include at least 1 professor" so when we subtract the number of cases in which there are only students from total number of cases, we will get the number of cases in which the committee consists of atleast one professor. There is no upper limit to the number of professors that can be included in the committee so but there is a lower limit and hence we remove all the cases in which the condition for the lower limit is violated.

Hope I was able to solve your problem.
Manager
Manager
avatar
Joined: 04 Dec 2009
Posts: 72
Location: INDIA
Followers: 2

Kudos [?]: 9 [0], given: 4

Re: m25 q.3 [#permalink] New post 05 Jan 2010, 19:39
Ans: E first find total no of possibale group 10C3 = 120

now find no of group thet can be form without single prof.(only student) 6C3=20

so the no of group in which atlast one prof. is 120-20=100

_________________

MBA (Mind , Body and Attitude )

Intern
Intern
avatar
Joined: 18 Apr 2010
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 10

Re: m25 q.3 [#permalink] New post 18 Apr 2010, 22:47
Thanks for all the explanations everyone, especially ddtiku.

I think this is a good example from which we can learn how to tackle many of the other possible twists they can spin on us in the gmat.

Here are a few examples that I would really appreciate some help on:

how would we calculate for at least 2 professors?

how would we calculate the probability the probablility that at least 2 professors would be selected as part of the committee if 1 definitely had to be selected?

Thanks in advance
Manager
Manager
avatar
Joined: 24 Jul 2009
Posts: 194
Location: Anchorage, AK
Schools: Mellon, USC, MIT, UCLA, NSCU
Followers: 4

Kudos [?]: 22 [0], given: 10

GMAT Tests User
Re: m25 q.3 [#permalink] New post 04 Jan 2011, 23:52
Are the r and n in C (n,r) flip flopped in the explanation in the testing module?

_________________

Reward wisdom with kudos. ;)

Director
Director
avatar
Joined: 01 Feb 2011
Posts: 770
Followers: 14

Kudos [?]: 80 [0], given: 42

GMAT Tests User
Re: m25 q.3 [#permalink] New post 11 Jun 2011, 08:18
arrangements with at least 1 professor in committee of 3 = total possible arrangements - no professors in committee
of 3
= 10C3 - 6c3 = 120 - 20 =100

Answer is E.
Senior Manager
Senior Manager
avatar
Joined: 08 Jun 2010
Posts: 397
Location: United States
Concentration: General Management, Finance
GMAT 1: 680 Q50 V32
Followers: 2

Kudos [?]: 55 [0], given: 13

GMAT Tests User
Re: m25 q.3 [#permalink] New post 13 Jan 2012, 19:08
Having problems with probability and combination.

Can somebody tell me what's wrong with this methodology?
at least 1 prof - 4x6x5 = 120
at least 2 profs - 4x3x6 = 72
at least 3 profs - 4x3x2 = 24

Sum = 120+72+24= 216
divide by 3 to remove the repeats = 72.

But the answer is 100?
Senior Manager
Senior Manager
User avatar
Joined: 23 Oct 2010
Posts: 383
Location: Azerbaijan
Concentration: Finance
GMAT 1: 690 Q47 V38
Followers: 11

Kudos [?]: 121 [0], given: 72

GMAT ToolKit User
Re: m25 q.3 [#permalink] New post 15 Jan 2012, 04:53
mourinhogmat1 wrote:
Having problems with probability and combination.

Can somebody tell me what's wrong with this methodology?


ur problem is that u have counted the same ppl several times. u should divide them by 2! or 3!
at least 1 prof - 4x6x5/2! = 120/2=60
at least 2 profs - 4x3x6 = 72/2!=36
at least 3 profs - 4x3x2 = 24/3!=4

60+36+4=100

the 2nd approach -

at least 1 prof - 4C1*6C2=60
at least 2 profs 4C2*6C1=36
at least 3 profs 4C3=4

hope it helps :)

_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

Manager
Manager
avatar
Status: MBA Aspirant
Joined: 12 Jun 2010
Posts: 178
Location: India
Concentration: Finance, International Business
WE: Information Technology (Investment Banking)
Followers: 3

Kudos [?]: 17 [0], given: 1

GMAT Tests User
Re: m25 q.3 [#permalink] New post 15 Jan 2012, 22:07
Ans is E.
Since we need at least one professor so the combinations can be PSS+PPS+PPP = 4c1*6c2+4c2*6c1+4c3 = 100
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18705
Followers: 3236

Kudos [?]: 22277 [0], given: 2611

Re: m25 q.3 [#permalink] New post 16 Jan 2012, 03:19
Expert's post
1
This post was
BOOKMARKED
Forrester300 wrote:
4 professors and 6 students are being considered for membership on a supervisory committee which must consist of 3 people. In how many ways can this committee be formed if it has to include at least 1 professor?

(A) 36
(B) 60
(C) 72
(D) 80
(E) 100

[Reveal] Spoiler: OA
E

Source: GMAT Club Tests - hardest GMAT questions

The best way to approach this problem is to consider an unconstrained version of the question first: how many committees of 3 are possible? The answer is C_{10}^3 = \frac{10!}{(7!3!)} = 120 . From this figure we have to subtract the number of committees that consist entirely of students i.e. C_{6}^3 = \frac{6!}{(3!3!)} = 20 . The final answer is C_{10}^3 - C_6^3 = 120 - 20 = 100 .
The correct answer is E.
--------------------------------------------------------------------------------
I don't understand why we only subtract from the students only here? As first we take all the possible comibinations then minus just by if all the seats were to be filled by students only?? Why wont this only leave combinations of seat that will will be filled by just professors then? Dont understand the answer can someone please dumb it down to explain to me, many thanks JF.


4 professors and 6 students are being considered for membership on a supervisory committee which must consist of 3 people. If the committee has to include at least 1 professor, how many ways can this committee be formed?
A. 36
B. 60
C. 72
D. 80
E. 100

{The committees with at least one professor} = {Total committees possible} - {The committees with zero professors} (so minus the committees with only students in them).

So, C^3_{10} (total # of selection of 3 out of 10) minus C^3_6 (# of selection of 3 person from 6 students, which means zero professor):

C^3_{10}-C^3_6=\frac{10}{7!*3!}-\frac{6!}{3!*3!}=120-20=100.


Or direct approach:

{The committees with at least one professor} = {The committees with 1 professor / 2 students} + {The committees with 2 professors / 1 student} + {The committees with 3 professors / 0 students}:

OR: C^1_4*C^2_6+C^2_4*C^1_6+C^3_4=100;

Answer: E.

Also discussed here: why-am-i-wrong-85865.html

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 25 Nov 2011
Posts: 261
Location: India
Concentration: Technology, General Management
GPA: 3.95
WE: Information Technology (Computer Software)
Followers: 3

Kudos [?]: 36 [0], given: 20

Re: m25 q.3 [#permalink] New post 21 Feb 2012, 06:01
cyrusthegreat wrote:
Thanks for all the explanations everyone, especially ddtiku.

I think this is a good example from which we can learn how to tackle many of the other possible twists they can spin on us in the gmat.

Here are a few examples that I would really appreciate some help on:

how would we calculate for at least 2 professors?

how would we calculate the probability the probablility that at least 2 professors would be selected as part of the committee if 1 definitely had to be selected?

Thanks in advance


It is = (total possibilities) - (only students) - (2 students + 1 professor)
= 10c3 - 6c3 - (4c1 * 6c2)

_________________

-------------------------
-Aravind Chembeti

Intern
Intern
avatar
Joined: 15 Apr 2011
Posts: 49
Followers: 0

Kudos [?]: 0 [0], given: 8

GMAT ToolKit User
Re: m25 q.3 [#permalink] New post 22 Feb 2012, 10:46
I was running into similar issue. Thanks for all the explanations.
Intern
Intern
avatar
Joined: 07 Jan 2011
Posts: 15
Followers: 0

Kudos [?]: 4 [0], given: 12

Re: m25 q.3 [#permalink] New post 14 Mar 2012, 01:26
these are the type of questions that trip me up... i thought that the committee is 1 professor and 2 students
Manager
Manager
avatar
Joined: 26 Jan 2012
Posts: 78
Followers: 0

Kudos [?]: 11 [0], given: 14

Re: m25 q.3 [#permalink] New post 15 Jan 2013, 05:24
Total ways = 120 ways (as explained above).
Probability that all seats are for students = 6/10X5/9X4/8 = 1/6
Nos of ways that there are 3 students in all three seats = 1/6X120 = 20 ways
Nos of ways that there is atleast 1 proffesor on any one of three seats = 120-20 = 100 ways
Intern
Intern
avatar
Joined: 08 Jan 2013
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: m25 q.3 [#permalink] New post 15 Jan 2013, 08:13
This was among hardest questions of GMAT or gmatclub?
Intern
Intern
avatar
Joined: 20 Dec 2013
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: m25 q.3 [#permalink] New post 03 Jan 2014, 10:03
Y cant we calculate as follows
No of ways of selecting a professor is 4C1
No of ways of selecting other 2 members 9C2
Total number of ways = 4C1×9C2 ???
Re: m25 q.3   [#permalink] 03 Jan 2014, 10:03
    Similar topics Author Replies Last post
Similar
Topics:
18 m25 #12 bigfernhead 20 28 Oct 2008, 05:23
11 Experts publish their posts in the topic m25#02 duuuma 29 17 Oct 2008, 13:28
21 Experts publish their posts in the topic m25 #22 duuuma 21 20 Oct 2008, 14:27
16 Experts publish their posts in the topic M25 #29 sharmar 23 09 Oct 2008, 06:34
Display posts from previous: Sort by

m25 q.3

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 22 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.