Mary and Joe are to throw three dice each. The score is the : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 19 Jan 2017, 20:23

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Mary and Joe are to throw three dice each. The score is the

Author Message
TAGS:

Hide Tags

SVP
Joined: 16 Jul 2009
Posts: 1628
Schools: CBS
WE 1: 4 years (Consulting)
Followers: 42

Kudos [?]: 1057 [9] , given: 2

Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

05 Nov 2009, 13:41
9
KUDOS
28
This post was
BOOKMARKED
00:00

Difficulty:

85% (hard)

Question Stats:

49% (02:21) correct 51% (02:18) wrong based on 124 sessions

HideShow timer Statistics

Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

A. 24/64
B. 32/64
C. 36/64
D. 40/64
E. 42/64
[Reveal] Spoiler: OA

_________________

The sky is the limit
800 is the limit

GMAT Club Premium Membership - big benefits and savings

Math Expert
Joined: 02 Sep 2009
Posts: 36567
Followers: 7081

Kudos [?]: 93219 [23] , given: 10553

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

05 Nov 2009, 13:59
23
KUDOS
Expert's post
12
This post was
BOOKMARKED
noboru wrote:
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5.
Expected value of three dice is 3*3.5=10.5.

Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2.

P=1/2.
_________________
SVP
Joined: 16 Jul 2009
Posts: 1628
Schools: CBS
WE 1: 4 years (Consulting)
Followers: 42

Kudos [?]: 1057 [0], given: 2

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

05 Nov 2009, 14:20
Bunuel wrote:
noboru wrote:
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5.
Expected value of three dice is 3*3.5=10.5.

Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2.

P=1/2.

Loved that approach
_________________

The sky is the limit
800 is the limit

GMAT Club Premium Membership - big benefits and savings

Manager
Joined: 22 Jun 2010
Posts: 212
Followers: 1

Kudos [?]: 110 [30] , given: 13

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

24 Sep 2010, 11:17
30
KUDOS
6
This post was
BOOKMARKED
would you love to see how attacked it?
if Joe is expected to outscore his friend, he should get these sums, 11,12,13...18
all possibilities are from 3 to 18
so : prob =8/16 equal to 1/2
PS. If you are wondering how I came to 3 as min because 1+1+1
and likewise 18 is max (6+6+6)
SVP
Joined: 16 Jul 2009
Posts: 1628
Schools: CBS
WE 1: 4 years (Consulting)
Followers: 42

Kudos [?]: 1057 [1] , given: 2

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

24 Sep 2010, 12:28
1
KUDOS
imania wrote:
would you love to see how attacked it?
if Joe is expected to outscore his friend, he should get these sums, 11,12,13...18
all possibilities are from 3 to 18
so : prob =8/16 equal to 1/2
PS. If you are wondering how I came to 3 as min because 1+1+1
and likewise 18 is max (6+6+6)

Nice approach too!
_________________

The sky is the limit
800 is the limit

GMAT Club Premium Membership - big benefits and savings

Math Expert
Joined: 02 Sep 2009
Posts: 36567
Followers: 7081

Kudos [?]: 93219 [9] , given: 10553

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

24 Sep 2010, 22:20
9
KUDOS
Expert's post
2
This post was
BOOKMARKED
imania wrote:
would you love to see how attacked it?
if Joe is expected to outscore his friend, he should get these sums, 11,12,13...18
all possibilities are from 3 to 18
so : prob =8/16 equal to 1/2
PS. If you are wondering how I came to 3 as min because 1+1+1
and likewise 18 is max (6+6+6)

Unfortunately this approach is not right though for this particular case it gave a correct answer.

Consider this: if it were that Mary scored not 10 but 17 then Joe to outscore Mary should get only 18 and according to your approach as there are total of 16 scores possible then the probability of Joe getting 18 would be 1/16. But this is not correct, probability of 18 is (1/6)^3=1/216 not 1/16.

This is because not all scores from 3 to 18 have equal # of ways to occur: you can get 10 in many ways but 3 or 18 only in one way (3=1+1+1 and 18=6+6+6).

Hope it's clear.
_________________
SVP
Joined: 16 Jul 2009
Posts: 1628
Schools: CBS
WE 1: 4 years (Consulting)
Followers: 42

Kudos [?]: 1057 [0], given: 2

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

25 Sep 2010, 04:37
Bunuel wrote:
imania wrote:
would you love to see how attacked it?
if Joe is expected to outscore his friend, he should get these sums, 11,12,13...18
all possibilities are from 3 to 18
so : prob =8/16 equal to 1/2
PS. If you are wondering how I came to 3 as min because 1+1+1
and likewise 18 is max (6+6+6)

Unfortunately this approach is not right though for this particular case it gave a correct answer.

Consider this: if it were that Mary scored not 10 but 17 then Joe to outscore Mary should get only 18 and according to your approach as there are total of 16 scores possible then the probability of Joe getting 18 would be 1/16. But this is not correct, probability of 18 is (1/6)^3=1/216 not 1/16.

This is because not all scores from 3 to 18 have equal # of ways to occur: you can get 10 in many ways but 3 or 18 only in one way (3=1+1+1 and 18=6+6+6).

Hope it's clear.

Fantastic explanation!
_________________

The sky is the limit
800 is the limit

GMAT Club Premium Membership - big benefits and savings

Manager
Joined: 19 Apr 2010
Posts: 210
Schools: ISB, HEC, Said
Followers: 4

Kudos [?]: 77 [0], given: 28

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

27 Sep 2010, 03:01
Is there any alternate approach to solve this problme?
Retired Moderator
Joined: 02 Sep 2010
Posts: 805
Location: London
Followers: 105

Kudos [?]: 957 [0], given: 25

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

27 Sep 2010, 14:55
Yes, but alternative approaches revolve around the same idea.

I can tell you how to reduce this problem to that of a multinomial expansion if you want, but the technique is beyond the scope of GMAT. The answer presented here is the simplest possible
_________________
Intern
Joined: 05 Oct 2010
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

05 Oct 2010, 22:05
How did you get the possible scores i.e 16 and so the probablity is 1/16

Bunuel wrote:
imania wrote:
Unfortunately this approach is not right though for this particular case it gave a correct answer.

Consider this: if it were that Mary scored not 10 but 17 then Joe to outscore Mary should get only 18 and according to your approach as there are total of 16 scores possible then the probability of Joe getting 18 would be 1/16. But this is not correct, probability of 18 is (1/6)^3=1/216 not 1/16.

This is because not all scores from 3 to 18 have equal # of ways to occur: you can get 10 in many ways but 3 or 18 only in one way (3=1+1+1 and 18=6+6+6).

Hope it's clear.
Retired Moderator
Joined: 02 Sep 2010
Posts: 805
Location: London
Followers: 105

Kudos [?]: 957 [0], given: 25

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

05 Oct 2010, 23:26
sanober1985 wrote:
How did you get the possible scores i.e 16 and so the probablity is 1/16

Bunuel wrote:
imania wrote:
Unfortunately this approach is not right though for this particular case it gave a correct answer.

Consider this: if it were that Mary scored not 10 but 17 then Joe to outscore Mary should get only 18 and according to your approach as there are total of 16 scores possible then the probability of Joe getting 18 would be 1/16. But this is not correct, probability of 18 is (1/6)^3=1/216 not 1/16.

This is because not all scores from 3 to 18 have equal # of ways to occur: you can get 10 in many ways but 3 or 18 only in one way (3=1+1+1 and 18=6+6+6).

Hope it's clear.

The possible scores are {3,4,5,...,18} which is 16 distinct numbers

But probability is NOT 1/16. The outcomes are not equally likely
_________________
Manager
Joined: 16 Jun 2010
Posts: 188
Followers: 2

Kudos [?]: 84 [0], given: 5

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

06 Oct 2010, 02:05
Bunuel wrote:
noboru wrote:
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5.
Expected value of three dice is 3*3.5=10.5.

Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2.

P=1/2.

Amazing explanation, but is this a GMAT type question, if yes then I doubt I will ever be able to solve such questions in Real GMAT Time and space. It is too far fetched for me to even think I can crack such a question in normal finite time, forget GMAT Time !!!
_________________

Please give me kudos, if you like the above post.
Thanks.

Math Expert
Joined: 02 Sep 2009
Posts: 36567
Followers: 7081

Kudos [?]: 93219 [3] , given: 10553

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

06 Oct 2010, 02:46
3
KUDOS
Expert's post
sanober1985 wrote:
How did you get the possible scores i.e 16 and so the probablity is 1/16

Bunuel wrote:
imania wrote:
Unfortunately this approach is not right though for this particular case it gave a correct answer.

Consider this: if it were that Mary scored not 10 but 17 then Joe to outscore Mary should get only 18 and according to your approach as there are total of 16 scores possible then the probability of Joe getting 18 would be 1/16. But this is not correct, probability of 18 is (1/6)^3=1/216 not 1/16.

This is because not all scores from 3 to 18 have equal # of ways to occur: you can get 10 in many ways but 3 or 18 only in one way (3=1+1+1 and 18=6+6+6).

Hope it's clear.

When you roll 3 dice you can have the following sums: 3 (min possible 1+1+1), 4, 5, 6, ...., 18 (max possible 6+6+6), so total of 16 possible sums. But as you can see in my previous post (the one you quote) the probability of these score are not equal, so it's not 1/16 for each.

devashish wrote:
Bunuel wrote:
noboru wrote:
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5.
Expected value of three dice is 3*3.5=10.5.

Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2.

P=1/2.

Amazing explanation, but is this a GMAT type question, if yes then I doubt I will ever be able to solve such questions in Real GMAT Time and space. It is too far fetched for me to even think I can crack such a question in normal finite time, forget GMAT Time !!!

Don't worry, you won't see such kind of question on GMAT.
_________________
Senior Manager
Joined: 30 Nov 2010
Posts: 263
Schools: UC Berkley, UCLA
Followers: 1

Kudos [?]: 93 [1] , given: 66

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

31 Jan 2011, 16:23
1
KUDOS
How were you able to come up with (1+2+3+4+5+6)? I understand that one outcome out of six occurs when Joe rolls the dice but the other part... a bit puzzling???
_________________

Thank you for your kudoses Everyone!!!

"It always seems impossible until its done."
-Nelson Mandela

Math Expert
Joined: 02 Sep 2009
Posts: 36567
Followers: 7081

Kudos [?]: 93219 [2] , given: 10553

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

31 Jan 2011, 16:36
2
KUDOS
Expert's post
mariyea wrote:
How were you able to come up with (1+2+3+4+5+6)? I understand that one outcome out of six occurs when Joe rolls the dice but the other part... a bit puzzling???

Expected value of a roll of one die is 1/6*1+1/6*2+1/6*3+1/6*4+1/6*5+1/6*6=1/6*(1+2+3+4+5+6)=3.5.
_________________
Senior Manager
Joined: 30 Nov 2010
Posts: 263
Schools: UC Berkley, UCLA
Followers: 1

Kudos [?]: 93 [0], given: 66

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

01 Feb 2011, 05:45
Bunuel wrote:
mariyea wrote:
How were you able to come up with (1+2+3+4+5+6)? I understand that one outcome out of six occurs when Joe rolls the dice but the other part... a bit puzzling???

Expected value of a roll of one die is 1/6*1+1/6*2+1/6*3+1/6*4+1/6*5+1/6*6=1/6*(1+2+3+4+5+6)=3.5.

I get it now Thanks!
_________________

Thank you for your kudoses Everyone!!!

"It always seems impossible until its done."
-Nelson Mandela

Senior Manager
Joined: 28 Dec 2010
Posts: 334
Location: India
Followers: 1

Kudos [?]: 201 [0], given: 33

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

29 May 2012, 06:42
Bunuel, was just solving this sum, what do you mean by expected value of the sum? This is a new approach for me. Would be very nice if you could explain.

I solved it using combination. to get more than 10 you need 3,3,5 and above on the dice. for ist dice you can have 3 nos more than 3, likewise for second. For third the nos are 5 &6 ie. 2 nos. so 3*3*2 = 18 no. of sums that will deliver 10+ also there are various arrangements of these 3 nos is 18*3! = 108.

Total no of sums possible = 6*6*6 = 216

Probability = 108/216 = 1/2

Am i right in this approach?
Manager
Joined: 10 Jan 2011
Posts: 244
Location: India
GMAT Date: 07-16-2012
GPA: 3.4
WE: Consulting (Consulting)
Followers: 0

Kudos [?]: 57 [0], given: 25

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

03 Jul 2012, 02:18
vibhav wrote:
Bunuel, was just solving this sum, what do you mean by expected value of the sum? This is a new approach for me. Would be very nice if you could explain.

I solved it using combination. to get more than 10 you need 3,3,5 and above on the dice. for ist dice you can have 3 nos more than 3, likewise for second. For third the nos are 5 &6 ie. 2 nos. so 3*3*2 = 18 no. of sums that will deliver 10+ also there are various arrangements of these 3 nos is 18*3! = 108.

Total no of sums possible = 6*6*6 = 216

Probability = 108/216 = 1/2

Am i right in this approach?

This approach may not work. Assume that on first die joe got 1, second die 6 and thrid die 6, then sum is 13. hence assuming that you need 3 on first and sencond die is wrong.

at least 1 die should have 4 or more to get the sum above 10. No restriction on minimum on one die.

Bunnel's approach is right. possible outcome above 10 are 8 and possible out come below 10 are also 8. hence probability = 8/16 = 1/2
_________________

-------Analyze why option A in SC wrong-------

Moderator
Joined: 02 Jul 2012
Posts: 1231
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE: Engineering (Energy and Utilities)
Followers: 116

Kudos [?]: 1386 [0], given: 116

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

03 Jul 2012, 23:05
Bunuel wrote:
noboru wrote:
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5.
Expected value of three dice is 3*3.5=10.5.

Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2.

P=1/2.

Can someone please explain what mistake i'm doing:

Total No. Of Possible Outcomes = 216

Outcomes where Joe scores 10 or less:

111 ---> 1
222 ---> 1
333 ---> 1
112 ---> 3, 113 ---> 3, 114 ---> 3, 115 ---> 3, 116 ---> 3,
221 ---> 3, 223 ---> 3, 224 ---> 3, 225 ---> 3, 226 ---> 3,
331 ---> 3, 332 ---> 3, 334 ---> 3,
441 ---> 3, 442 ---> 3,

Outcomes where Joe scores more than 10 = 216 - 48 = 168

Probability = 168/216 = 7/9
_________________

Did you find this post helpful?... Please let me know through the Kudos button.

Thanks To The Almighty - My GMAT Debrief

GMAT Reading Comprehension: 7 Most Common Passage Types

Math Expert
Joined: 02 Sep 2009
Posts: 36567
Followers: 7081

Kudos [?]: 93219 [1] , given: 10553

Re: Mary and Joe are to throw three dice each. The score is the [#permalink]

Show Tags

04 Jul 2012, 00:11
1
KUDOS
Expert's post
MacFauz wrote:
Bunuel wrote:
noboru wrote:
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?

Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5.
Expected value of three dice is 3*3.5=10.5.

Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2.

P=1/2.

Can someone please explain what mistake i'm doing:

Total No. Of Possible Outcomes = 216

Outcomes where Joe scores 10 or less:

111 ---> 1
222 ---> 1
333 ---> 1
112 ---> 3, 113 ---> 3, 114 ---> 3, 115 ---> 3, 116 ---> 3,
221 ---> 3, 223 ---> 3, 224 ---> 3, 225 ---> 3, 226 ---> 3,
331 ---> 3, 332 ---> 3, 334 ---> 3,
441 ---> 3, 442 ---> 3,

Outcomes where Joe scores more than 10 = 216 - 48 = 168

Probability = 168/216 = 7/9

You are missing some cases:
123 - 6 ways;
124 - 6 ways;
125 - 6 ways;
126 - 6 ways;
134 - 6 ways;
135 - 6 ways;
136 - 6 ways;
145 - 6 ways;
234 - 6 ways;
235 - 6 ways.

So, total of 60 scenarios were missing. Together with the 48 cases you counted we would have 48+60=108 ways to get the sum of 10 or less, so the probability is 1-108/216=1/2.

Hope it helps.
_________________
Re: Mary and Joe are to throw three dice each. The score is the   [#permalink] 04 Jul 2012, 00:11

Go to page    1   2   3    Next  [ 44 posts ]

Similar topics Replies Last post
Similar
Topics:
2 Joey throws a dice 3 times and decides to invite 5 23 Apr 2015, 05:59
8 A and B in turns, throw a dice. If A gets a sum of 8 before 3 08 Aug 2013, 06:27
37 Mary and Joe are to throw three dice each. The score is the 13 22 Jan 2012, 02:07
23 Crowan throws 3 dice and records the product of the numbers 16 12 Feb 2011, 04:45
19 Mary and Joe are to throw three dice each. The score is the 5 23 Mar 2008, 12:23
Display posts from previous: Sort by