Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

For determining last digit of a power for numbers 0, 1, 5, and 6, I am not clear on how to determine the last digit.

Your post says: • Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base.

What is the last digit of 345^27 ---is the last digit 5? What is the last digit of 216^32----is the last digit 6? What is the last digit of 111^56---is the last digit 1?

For determining last digit of a power for numbers 0, 1, 5, and 6, I am not clear on how to determine the last digit.

Your post says: • Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base.

What is the last digit of 345^27 ---is the last digit 5? What is the last digit of 216^32----is the last digit 6? What is the last digit of 111^56---is the last digit 1?

Any clarification would be helpful.

Thanks for all your help.

First of all: last digit of 345^27 is the same as that of 5^27 (the same for 216^32 and 111^56);

Next: 1 in any integer power is 1; 5^1=5, 5^2=25, 5^3=125, ... 6^1=6, 6^2=36, 5^3=216, ...

So yes, integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base: thus 0, 1, 5, and 6 respectively.

I am having a small confusion between two concepts for which one of my practice Q went wrong. During my elementary school I have studied BODMAS B - Brackets O - Of D- Division M-Mulitplication A- Addition S- Substraction

I tried with this approach and it went wrong, while i was going through this again i happened to see a difference between PEMDAS & BODMAS (Multiplication order is different) .

Can somebody help me to understand which one i should follow.

I am having a small confusion between two concepts for which one of my practice Q went wrong. During my elementary school I have studied BODMAS B - Brackets O - Of D- Division M-Mulitplication A- Addition S- Substraction

I tried with this approach and it went wrong, while i was going through this again i happened to see a difference between PEMDAS & BODMAS (Multiplication order is different) .

Can somebody help me to understand which one i should follow.

Thanks Humble GMAT ASPIRANT

The rule mentioned in the initial post is correct.

Anyway: what difference are you talking about? Can you give an example?
_________________

Any nonzero natural number n can be factored into primes, written as a product of primes or powers of primes. Moreover, this factorization is unique except for a possible reordering of the factors.

Pls give me the example of bold face text because i am not sure what does it exactly means.

Thanks
_________________

The proof of understanding is the ability to explain it.

Any nonzero natural number n can be factored into primes, written as a product of primes or powers of primes. Moreover, this factorization is unique except for a possible reordering of the factors.

Pls give me the example of bold face text because i am not sure what does it exactly means.

Thanks

It's called the fundamental theorem of arithmetic (or the unique-prime-factorization theorem) which states that any integer greater than 1 can be written as a unique product of prime numbers.

For example: 60=2^2*3*5 --> 60 can be written as a product of primes (powers of primes) only in this unique way (you can just reorder the multiples and write 3*2^2*5 or 2^2*5*3 ...).
_________________

thank you for the great post. I currently use the GMAT Toolkit app, which I highly recommend, when can I expect this update? In addition, when will the Manhattan GMAT books be updated to the app?

Thanks,

gmatclubot

Re: Math: Number Theory
[#permalink]
27 May 2011, 07:21

Since my last post, I’ve got the interview decisions for the other two business schools I applied to: Denied by Wharton and Invited to Interview with Stanford. It all...

[rss2posts title=The MBA Manual title_url=https://mbamanual.com/2016/11/22/mba-vs-mim-guest-post/ sub_title=MBA vs. MiM :3qa61fk6]Hey, guys! We have a great guest post by Abhyank Srinet of MiM-Essay . In a quick post and an...

Marketing is one of those functions, that if done successfully, requires a little bit of everything. In other words, it is highly cross-functional and requires a lot of different...