Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In the last two weeks, we discussed some max minstrategies. Today, let’s look at another max-min question in which we apply the strategy of focusing on the extremes. The largest or the smallest values are often found at the extremes of a given range.

Question: If x and y are integers such that (x+1)^2 is less than or equal to 36 and (y-1)^2 is less than 64, what is the sum of the maximum possible value of xy and the minimum possible value of xy?

(A) -16

(B) -14

(C) 0

(D) 14

(E) 16

Solution: To get the sum of the maximum and minimum possible values of xy, we need to know the maximum and minimum values of xy. For those, we need to find the values that x and y can take. So first, we should review the information given:

(x + 1)^2 <= 36

(y – 1)^2 < 64

We need to find the values that x and y can take. There are many ways of doing that. We can solve the inequality using the wave method discussed in this post or using the concept of absolute values. Let’s discuss both the methods.

Wave method to solve inequalities:

Solve for x: (x + 1)^2 <= 36

(x + 1)^2 – 6^2 <= 0

(x + 1 + 6)(x + 1 – 6) <= 0

(x + 7)(x – 5) <= 0

-7 <= x <= 5 (Using the wave method)

Solve for y: (y – 1)^2 < 64

(y – 1)^2 – 8^2 < 0

(y – 1 + 8)(y – 1 – 8) < 0

(y + 7)(y – 9) < 0

-7 < y < 9 (Using the wave method)

Or you can solve taking the square root on both sides

Solve for x: (x + 1)^2 <= 36

|x + 1| <= 6

-6 <= x + 1 <= 6 (discussed in your Veritas Algebra book)

-7 <= x <= 5

So x can take values: -7, -6, -5, -4, … 3, 4, 5

Solve for y: (y – 1)^2 < 64

|y – 1| < 8

-8 < y – 1 < 8 (discussed in your Veritas Algebra book)

-7 < y < 9

So y can take values: -6, -5, -4, -3, … 6, 7, 8.

Now that we have the values of x and y, we should try to find the minimum and maximum values of xy.

Note that the values of xy can be positive as well as negative. The minimum value will be the negative value with largest absolute value (largest negative) and the maximum value will be the positive value with the largest absolute value.

Minimum value – For the value to be negative, one and only one of x and y should be negative. Focus on the extreme values: if x is -7 and y is 8, we get xy = -56. This is the negative value with largest absolute value.

Maximum value – For the value to be positive, both x and y should have the same signs. If x = -7 and y = -6, we get xy = 42. This is the largest positive value.

The sum of the maximum value of xy and minimum value of xy is -56 + 42 = -14

Answer (B)

Try to think of it in terms of a number line. x lies in the range -7 to 5 and y lies in the range -6 to 8. The range is linear so the end points give us the maximum/minimum values. Think of what happens when you plot a quadratic – the minimum/maximum could lie anywhere.

Karishma, a Computer Engineer with a keen interest in alternative Mathematical approaches, has mentored students in the continents of Asia, Europe and North America. She teaches the GMAT for Veritas Prep and regularly participates in content development projects such as this blog!

ForumBlogs - GMAT Club’s latest feature blends timely Blog entries with forum discussions. Now GMAT Club Forums incorporate all relevant information from Student, Admissions blogs, Twitter, and other sources in one place. You no longer have to check and follow dozens of blogs, just subscribe to the relevant topics and forums on GMAT club or follow the posters and you will get email notifications when something new is posted. Add your blog to the list! and be featured to over 300,000 unique monthly visitors

The Stanford interview is an alumni-run interview. You give Stanford your current address and they reach out to alumni in your area to find one that can interview you...

Originally, I was supposed to have an in-person interview for Yale in New Haven, CT. However, as I mentioned in my last post about how to prepare for b-school interviews...

Interested in applying for an MBA? In the fourth and final part of our live QA series with guest expert Chioma Isiadinso, co-founder of consultancy Expartus and former admissions...