Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Median of a set containing unknown values? [#permalink]

Show Tags

18 Jan 2014, 11:28

Hi,

I was reading mgmat quant statistics chapter wherein i am not able to understand the median of an unknown value type. can somebody please tell how to go about in these set of questions?

I was reading mgmat quant statistics chapter wherein i am not able to understand the median of an unknown value type. can somebody please tell how to go about in these set of questions?

anuj

Anuj:

More than happy to help out -- the thing that is unique about medians is that you often don't need to know all of the numbers in a set to still figure out what the median is. For example, if I gave you this set of numbers (x, 4, 5, 7, 7, 9, 11) and you are told that they are all integers -- no matter what 'x' is -- the median is still 7. If x is 0, median is 7. If x is 100, median is 7. if x is 7.. guess what.. median is 7!!

Does that answer your question?

-Brian
_________________

Brian Lange | Manhattan GMAT Instructor | North Carolina

Re: Median of a set containing unknown values? [#permalink]

Show Tags

19 Jan 2014, 01:27

brianlange77 wrote:

anu1706 wrote:

Hi,

I was reading mgmat quant statistics chapter wherein i am not able to understand the median of an unknown value type. can somebody please tell how to go about in these set of questions?

anuj

Anuj:

More than happy to help out -- the thing that is unique about medians is that you often don't need to know all of the numbers in a set to still figure out what the median is. For example, if I gave you this set of numbers (x, 4, 5, 7, 7, 9, 11) and you are told that they are all integers -- no matter what 'x' is -- the median is still 7. If x is 0, median is 7. If x is 100, median is 7. if x is 7.. guess what.. median is 7!!

Does that answer your question?

-Brian

Sorry but that not precisely my question was!! i can understand median is middle number in odd and avg. of 2 middle in even set of data points. What I want to ask is how unknown value will effect the median of a set..Please explain what this means.:

Extract from manhattan "Consider the unordered set {x, 2, 5, 11, 11, 12, 33}. No matter whether x is less than 11, equal to 11, or greater than 11, the median of the resulting set will be 11. Why? By contrast, the median of the unordered set {x, 2, 5, 11, 12, 12, 33} depends on x. If x is 11 or less, the median is 11. If x is between 11 and 12, the median is x. Finally, if x is 12 or more, the median is 12. Explain!..

Extract from manhattan "Consider the unordered set {x, 2, 5, 11, 11, 12, 33}. No matter whether x is less than 11, equal to 11, or greater than 11, the median of the resulting set will be 11. Why? By contrast, the median of the unordered set {x, 2, 5, 11, 12, 12, 33} depends on x. If x is 11 or less, the median is 11. If x is between 11 and 12, the median is x. Finally, if x is 12 or more, the median is 12. Explain!..

Notice how the two given sets are different. Ignoring x from the sets, the first set has two 11s in the middle (3rd and 4th terms) while the second one has an 11 and a 12 in the middle.

Consider {2, 5, 11, 11, 12, 33} We need to add a term 'x' in this set and then find out the median. x can take any value and to find the median, we will put x in the set such that all terms are in ascending order. The middle term (fourth term) of this set will be the median. Depending on the value of x, several scenarios are possible. Let's give some values to x and see the various scenarios. x = 1; {1, 2, 5, 11, 11, 12, 33} (median 11) x = 3; {2, 3, 5, 11, 11, 12, 33} (median 11) x = 9; {2, 5, 9, 11, 11, 12, 33} (median 11) x = 11; {2, 5, 11, 11, 11, 12, 33} (the only way x can be in the middle of the two 11s is if it is 11 too. x = 12; {2, 5, 11, 11, 12, 12, 33} (median 11) x = 25; {2, 5, 11, 11, 12, 25, 33} (median 11) x = 50; {2, 5, 11, 11, 12, 33, 50} (median 11)

Fourth term will be the median. The only time the fourth term (middle term) will be x will be when x is 11. Hence, whatever the case, the median will always be 11.

Consider {2, 5, 11, 12, 12, 33} Again, depending on the value of x, several scenarios are possible. Let's give some values to x and see the various scenarios. {1, 2, 5, 11, 12, 12, 33} (median 11) {2, 3, 5, 11, 12, 12, 33} (median 11) {2, 5, 9, 11, 12, 12, 33} (median 11) {2, 5, 11, 11.2, 12, 12, 33} (if x is in the middle of 11 and 12, it can take many values such as 11.2/11.7 etc and that will be the median) {2, 5, 11, 12, 12, 12, 33} (median 12) {2, 5, 11, 12, 12, 25, 33} (median 12) {2, 5, 11, 12, 12, 33, 50} (median 12)
_________________

Re: Median of a set containing unknown values? [#permalink]

Show Tags

19 Jan 2014, 23:50

VeritasPrepKarishma wrote:

anu1706 wrote:

Extract from manhattan "Consider the unordered set {x, 2, 5, 11, 11, 12, 33}. No matter whether x is less than 11, equal to 11, or greater than 11, the median of the resulting set will be 11. Why? By contrast, the median of the unordered set {x, 2, 5, 11, 12, 12, 33} depends on x. If x is 11 or less, the median is 11. If x is between 11 and 12, the median is x. Finally, if x is 12 or more, the median is 12. Explain!..

Notice how the two given sets are different. Ignoring x from the sets, the first set has two 11s in the middle (3rd and 4th terms) while the second one has an 11 and a 12 in the middle.

Consider {2, 5, 11, 11, 12, 33} We need to add a term 'x' in this set and then find out the median. x can take any value and to find the median, we will put x in the set such that all terms are in ascending order. The middle term (fourth term) of this set will be the median. Depending on the value of x, several scenarios are possible. Let's give some values to x and see the various scenarios. x = 1; {1, 2, 5, 11, 11, 12, 33} (median 11) x = 3; {2, 3, 5, 11, 11, 12, 33} (median 11) x = 9; {2, 5, 9, 11, 11, 12, 33} (median 11) x = 11; {2, 5, 11, 11, 11, 12, 33} (the only way x can be in the middle of the two 11s is if it is 11 too. x = 12; {2, 5, 11, 11, 12, 12, 33} (median 11) x = 25; {2, 5, 11, 11, 12, 25, 33} (median 11) x = 50; {2, 5, 11, 11, 12, 33, 50} (median 11)

Fourth term will be the median. The only time the fourth term (middle term) will be x will be when x is 11. Hence, whatever the case, the median will always be 11.

Consider {2, 5, 11, 12, 12, 33} Again, depending on the value of x, several scenarios are possible. Let's give some values to x and see the various scenarios. {1, 2, 5, 11, 12, 12, 33} (median 11) {2, 3, 5, 11, 12, 12, 33} (median 11) {2, 5, 9, 11, 12, 12, 33} (median 11) {2, 5, 11, 11.2, 12, 12, 33} (if x is in the middle of 11 and 12, it can take many values such as 11.2/11.7 etc and that will be the median) {2, 5, 11, 12, 12, 12, 33} (median 12) {2, 5, 11, 12, 12, 25, 33} (median 12) {2, 5, 11, 12, 12, 33, 50} (median 12)

Thanks for the insight. can you please help in cementing the concept with the help of a official question please.

gmatclubot

Re: Median of a set containing unknown values?
[#permalink]
19 Jan 2014, 23:50

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Post-MBA I became very intrigued by how senior leaders navigated their career progression. It was also at this time that I realized I learned nothing about this during my...