MGMAT Test1:#29 In a room filled with 7 people, 4 people : PS Archive
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 18 Jan 2017, 23:46

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# MGMAT Test1:#29 In a room filled with 7 people, 4 people

Author Message
Senior Manager
Joined: 28 Feb 2007
Posts: 306
Followers: 1

Kudos [?]: 40 [0], given: 0

MGMAT Test1:#29 In a room filled with 7 people, 4 people [#permalink]

### Show Tags

29 Mar 2008, 11:55
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 0 sessions

### HideShow timer Statistics

This topic is locked. If you want to discuss this question please re-post it in the respective forum.

MGMAT Test1:#29

In a room filled with 7 people, 4 people have exactly 1 friend in the room and 3 people have exactly 2 friends in the room (Assuming that friendship is a mutual relationship, i.e. if John is Peter's friend, Peter is John's friend). If two individuals are selected from the room at random, what is the probability that those two individuals are NOT friends?
A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21

I know OA and OE but didn't get it ( it is confusing for me). I appreciate different approaches and views
Explanations plz, thx.
Director
Joined: 10 Sep 2007
Posts: 947
Followers: 8

Kudos [?]: 287 [0], given: 0

### Show Tags

29 Mar 2008, 15:45
I will solve it using Combination approach.
We have 4 people with 1 friend, so total ways for that = 4C1 = 4
We have 3 people with 2 friend, so total ways for that = 3C2 = 3

Since friendship is mutually exclusive so people above two group will not be friends of each others.

Total ways of selecting 2 people from 7 people = 7C2 = 21

So Probability = 4 * 3 / 21 = 4/7
Manager
Joined: 27 Mar 2008
Posts: 53
Followers: 1

Kudos [?]: 6 [0], given: 0

### Show Tags

29 Mar 2008, 17:33
I agree with abhijit_sen's answer. Here's another way to look at things:

It may be easier to understand this by drawing arranging 7 letters A to G in a circle. You'll see that there is no way to achieve the "4 have exactly 1 friend and 3 have exactly 2 friends" requirement without drawing a triangle among 3 people and using 2 lines to pair up the remaining 4 people. For the sake of this argument, let ABC be the triangle, DE be a pair, and FG the last pair.

Now find the number of ways of there not being a pair of friends selected.
Let's say A is chosen first, there are only 4 people that can be chosen that won't a friend. This also applies for B and C, so altogether, there are 12 ways for this to happen.

(Notice that we don't do need to do the reverse where we choose D,E,F or G first because the would only end up choosing A, B, or C. We've already handled the case and the order doesn't matter)

Total ways = 7C2

Hence, 12/21 is the probability which simplifies to 4/7. Answer C
CEO
Joined: 17 Nov 2007
Posts: 3589
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 546

Kudos [?]: 3556 [0], given: 360

### Show Tags

29 Mar 2008, 23:36
$$P=1-(\frac47*\frac16+\frac37*\frac26)=\frac{16}{21}$$
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Manager
Joined: 02 Mar 2008
Posts: 210
Concentration: Finance, Strategy
Followers: 1

Kudos [?]: 45 [0], given: 1

### Show Tags

30 Mar 2008, 00:47
agree with Walker solution, it just says friend in a room, not necessary to break out into 2 grps, i think that is the confusing part. C is only correct when we make above assumption
Senior Manager
Joined: 20 Feb 2008
Posts: 296
Location: Bangalore, India
Schools: R1:Cornell, Yale, NYU. R2: Haas, MIT, Ross
Followers: 4

Kudos [?]: 45 [0], given: 0

### Show Tags

30 Mar 2008, 09:01
Hi, this is a long routed solution but it may help to see the logic.
Lets label the members as A,B,C,D,E,F,G
We begin by counting the relationships

B BC,BD,BE,BF,BG =5 total (we do not count BA because the relationship is mutual and we would be counting it twice)
C CD,CE,CF,CG = 4 total
D DE,DF,DG =3
E EF,EG =2
F FG =1
Therefore the total number of relationships is 6+5+4+3+2+1 =21
Criteria 1
If 4 people have exactly one friend then the number of relationships is 2
eg AB ,CD (A is a friend of B and B is a friend of A (1 relationship between 2 people), C is a friend of D and D is a friend of C (2nd relationship between 2 other people)Therefore we have 2 relationships between 4 people.=2

Criteria 2

3 people have exactly 2 friends in the room

CD,CE,DE (C is a friend of D and E (1 relationship), D is a friend of E and C, (2nd relationship) E is a friend of C and D(3rd relationship)) So we have 3 relationships in total that satisfy the above criteria =3

The probability that the two random individuals are friends =(3+2)/21 =5/21
The probability that the two random individuals chosen are not friends = 1- (5/21)
Senior Manager
Joined: 28 Feb 2007
Posts: 306
Followers: 1

Kudos [?]: 40 [0], given: 0

### Show Tags

30 Mar 2008, 11:42
I am grateful to u all for excellent ideas. Thank u, folks.
I don't have to provide OA and OE, as it is exactly the same with that of Ventivish.
Re: PS_Probability_friendship   [#permalink] 30 Mar 2008, 11:42
Display posts from previous: Sort by

# MGMAT Test1:#29 In a room filled with 7 people, 4 people

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.