Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Most efficient way to solve these equations ? [#permalink]
20 Jan 2013, 15:46
Hi,
I have found that these type of equations are very common in PS, DS and IR. I have seen many two part analysis questions based on these equations and I am sure most of you would have seen this in many DS/PS problems as well
What do you think would be the most efficient way to solve these equations? I always seem to cross the time limit , no matter how fast I try to do approach.
example 1: 6a +10b = 510 , where a and b could be one of these 10, 20, 30, 40, 50, and 60
Re: Most efficient way to solve these equations ? [#permalink]
21 Jan 2013, 04:33
1
This post received KUDOS
Expert's post
soaringAlone wrote:
Hi,
I have found that these type of equations are very common in PS, DS and IR. I have seen many two part analysis questions based on these equations and I am sure most of you would have seen this in many DS/PS problems as well
What do you think would be the most efficient way to solve these equations? I always seem to cross the time limit , no matter how fast I try to do approach.
example 1: 6a +10b = 510 , where a and b could be one of these 10, 20, 30, 40, 50, and 60
Let's look at the actual question (two part analysis - question 1)
Work crews Alpha and Zeta are repaving a section of freeway in Los Angeles. Work crew Alpha started its work one week (40 working hours) earlier than work crew Zeta, and started on the north end of the freeway, working its way south at a rate of 12 meters per hour since starting the job. Now, work crew Zeta has started at the south end, working its way north at a rate of 10 meters per hour. The section of freeway that needs to be repaved is 1.5 kilometers long, including the section that has already been paved.
Given that each crew will not necessarily work the same number of hours, which of the following answer choices represents an hourly workload for each crew that will finish the project? Number of Hours 10 20 30 40 50 60
Solution:
Let's try to find the leftover work. 1500 - 40*12 = 1020 m
12a + 10b = 1020
You have to find the values that fit for a (Alpha) and b (Zeta) You see that it is easy to put in a value for 'b' and subtract that from 1020.
Say b = 10, 12a = 920 (but 92 is not divisible by 12 so not possible) Say b = 20, 12a = 820 (but 82 is not divisible by 12 so not possible) Say b = 30, 12a = 720 a must be 60 because 12*60 = 720 _________________
Re: Most efficient way to solve these equations ? [#permalink]
21 Jan 2013, 18:40
A possible approach:
example 1: 6a +5b = 510[mistake in the original equation], where a and b could be one of these 10, 20, 30, 40, 50, and 60
Isolate b in terms of a: b = 102 - (6/5)a use the examples given and substitute for a. The numbers are simple: b = 102 - (6/5)(60) = 102-72=30 a=60, b=30
example 2: 5a + 6b = 200,000, where and b could be one of these 5000, 10000, 15000, 25000, 30000, 40000 Isolate a in terms of b(Why?): a = 40000 - (6/5)b again replace the given possible values of b, and you will find when b =25000, a = 40000 - (6/5)(25000) = 10000
Re: Most efficient way to solve these equations ? [#permalink]
18 Jul 2015, 05:07
Shorcut could be :
12A + 10Z = 1020 --> 6A+5Z = 510 --> A = (510-5Z) /6 --> Hey! That says that A must be a number divisible by 6 --> WOW ONLY TWO OPTIONS NOW A either 30 or 60..Plug In and choose ! Correct me if I am wrong.
Posted from my mobile device _________________
Dj!! Let us give something back!!
gmatclubot
Re: Most efficient way to solve these equations ?
[#permalink]
18 Jul 2015, 05:07
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...