Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: N is positive integer and hundredth digit of 10N is 6 [#permalink]
30 Apr 2012, 20:52
3
This post received KUDOS
This question should be re-framed by specifying that N is a two digit positive integer.
1) If the hundred's digit of 10N is 6 => the ten's digit of N is 6. 2) The ten's digit of N+13 is 7 => the one's digit of N is 5
The one's digit of N is 5 because for the ten's digit of N to be 6, and the ten's digit of N+13 to be 7, the addition of 13 to N must be causing a carry of 1 to the ten's column. Therefore 3 must be getting added to the ten's column. Now, if the one's digit is X, we must choose X in such a way that 60+X and 70+(X+3) are both divisible by 13. This is possible when X=5.
Option (B), provided that this number is two digit number (not given in the question).
If this is not a two digit number, then the numbers 260 and 273 will also satisfy this criteria and in that case the units digit will be 0, 364 and 377 will also satisfy with the units digit being 4, 663 and 676 will also satisfy with the units digit being 3....... so there is no unique answer for the units digit in that case. _________________
Re: N is positive integer and hundredth digit of 10N is 6 [#permalink]
30 Apr 2012, 20:57
My take: Hundredth digit of 10N is 6 => tenth digit of N is 6 N+13 tenth digit is 7 => unit digit of N shall be between 0 and 6 (inclusive of 0,6) The only answer options possible are 0,4,5 We know that 65 is divisible by 13. And no other additional clue is given we can conclude the unit digit to be '5' Answer option 'B' _________________
Out of these we need to find a number which when added to 13 yields a unique number whose tenth place is occupied by a 7.. We have 65 as that number so will select it to test it out ..
65+13 = 78 , tenth place is 7 .. So 1 condition is met ...
Lets multiply 10 by N we get 10 x 65 = 650 ..The hundredth unit is 6 , so the second condition has been met...
after satisfying 1 and 2 we know that n = 65 , the units digit of n is 5 (B) _________________
"When you want to succeed as bad as you want to breathe, then you’ll be successful.” - Eric Thomas
Re: N is positive integer and hundredth digit of 10N is 6 [#permalink]
28 Aug 2013, 20:40
1
This post received KUDOS
Expert's post
kassim wrote:
monir6000 wrote:
N is positive integer and hundredth digit of 10N is 6.If N and N+13 is multiple of 13 then N+13 tenth digit is 7. Now what is the unit digit of N.
A.7 B.5 C.8 D.4 E.0
Hello,
I didn't understand why the tens digit 6 if the hundredth digit of 10N is 6.
For me I assumed that it's a 3 digit number and the hundredth digit of N is 6
Can anyone please explain more?
Best, Kassim
We know that N is an integer. Let N = abc.Now, 10*N = abc0. As you can notice, the value of the each of the digit shifts place wise. Initially, the units digit of N was c, which is now 0. The tens unit of N was b, which is now at the hundred's place.Thus, when we know that the hundred's digit after multiplication by 10 is 6, then by similar analogy, we can say that the tens place of N must be 6. You can actually pick up numbers with tens digit as 6, and multiply by 10 to get an idea. Also, for this particular thing, it doesn't matter if N is a 2 digit number or a 10 digit number.
Re: N is positive integer and hundredth digit of 10N is 6 [#permalink]
31 Aug 2013, 12:48
mau5 wrote:
We know that N is an integer. Let N = abc.Now, 10*N = abc0. As you can notice, the value of the each of the digit shifts place wise. Initially, the units digit of N was c, which is now 0. The tens unit of N was b, which is now at the hundred's place.Thus, when we know that the hundred's digit after multiplication by 10 is 6, then by similar analogy, we can say that the tens place of N must be 6. You can actually pick up numbers with tens digit as 6, and multiply by 10 to get an idea. Also, for this particular thing, it doesn't matter if N is a 2 digit number or a 10 digit number.
Hope this helps.
Hi,
Thank you for your help. I don't know why I assumed that 10N is 3 digit number or more as one hundred and N not 10 times N.
Now it's Crystal clear
Thank you
gmatclubot
Re: N is positive integer and hundredth digit of 10N is 6
[#permalink]
31 Aug 2013, 12:48
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...