NEW SET of good PS(3) : GMAT Problem Solving (PS) - Page 3
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 22 Jan 2017, 09:20

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# NEW SET of good PS(3)

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Senior Manager
Joined: 12 Dec 2010
Posts: 282
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)
Followers: 9

Kudos [?]: 46 [0], given: 23

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

25 Apr 2011, 03:55
Bunuel wrote:
5. Mrs. Smith has been given film vouchers. Each voucher allows the holder to see a film without charge. She decides to distribute them among her four nephews so that each nephew gets at least two vouchers. How many vouchers has Mrs. Smith been given if there are 120 ways that she could distribute the vouchers?
(A) 13
(B) 14
(C) 15
(D) 16
(E) more than 16

Clearly there are more than 8 vouchers as each of four can get at least 2. So,
Quote:
basically 120 ways vouchers can the distributed are the ways to distribute x-8 vouchers
, so that each can get from zero to x-8 as at "least 2", or 2*4=8, we already booked. Let x-8 be k.

P.S. Direct formula:

The total number of ways of dividing n identical items among r persons, each one of whom, can receive 0,1,2 or more items is $$n+r-1C_{r-1}$$.

The total number of ways of dividing n identical items among r persons, each one of whom receives at least one item is $$n-1C_{r-1}$$.

Hope it helps.

Bunuel, I have a question on direct formula as well as on the question itself-Can we generalize the formula in case if out of n items, if r people has to share say more than 1 items (at least >=k items, where k >=2) .

Also could not get really why 120 should be the way of distributing x-8 vouchers
_________________

My GMAT Journey 540->680->730!

~ When the going gets tough, the Tough gets going!

Senior Manager
Joined: 12 Dec 2010
Posts: 282
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)
Followers: 9

Kudos [?]: 46 [0], given: 23

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

25 Apr 2011, 04:07
Bunuel wrote:
10. How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤3 and 1≤y≤3?[/b]
(A) 72
(B) 76
(C) 78
(D) 80
(E) 84

It would be better if you draw it while reading this explanation. With the restriction given (1≤x≤3 and 1≤y≤3) we get 9 points, from which we can form the triangle: (1,1), (1,2), (1,3), (2,1)...

From this 9 points any three (9C3) will form the triangle BUT THE SETS of three points which are collinear.

We'll have 8 sets of collinear points of three:
3 horizontal {(1,1),(2,1),(3,1)} {(1,2)(2,2)(3,2)}...
3 vertical
2 diagonal {(1,1)(2,2)(3,3)}{(1,3)(2,2)(3,1)}

So the final answer would be; 9C3-8=84-8=76

Hope it's clear.

Bunuel,

1- Collinear point issue will arise in case of overlapping values of x, y ? (as in here we have all the overlapping range for x & y). Also since range here is small for both x, y (ie.=3) we can manually calculate the collinear points but in case of large range how do we go about it ? should it be = # overlapping points on X + # overlapping points on Y + # diagonal points (which will essentially be min(# overlapping points on X , Y) -1 )-- Not so sure on this though ...

2- I see a similar Question in OG12 PS Q.229- The method explained here in the above example does not seems to fit too well there. basically in the question we have -4 <= X <=5, 6<= Y <=16. Can you please throw some light in the context of OG question....

TIA ~ Yogesh
_________________

My GMAT Journey 540->680->730!

~ When the going gets tough, the Tough gets going!

Senior Manager
Joined: 12 Dec 2010
Posts: 282
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)
Followers: 9

Kudos [?]: 46 [0], given: 23

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

01 May 2011, 00:13
bumping up in hope to get response
_________________

My GMAT Journey 540->680->730!

~ When the going gets tough, the Tough gets going!

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7125
Location: Pune, India
Followers: 2138

Kudos [?]: 13691 [1] , given: 222

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

27 May 2011, 04:53
1
KUDOS
Expert's post
yogesh1984 wrote:

Bunuel,

1- Collinear point issue will arise in case of overlapping values of x, y ? (as in here we have all the overlapping range for x & y). Also since range here is small for both x, y (ie.=3) we can manually calculate the collinear points but in case of large range how do we go about it ? should it be = # overlapping points on X + # overlapping points on Y + # diagonal points (which will essentially be min(# overlapping points on X , Y) -1 )-- Not so sure on this though ...

2- I see a similar Question in OG12 PS Q.229- The method explained here in the above example does not seems to fit too well there. basically in the question we have -4 <= X <=5, 6<= Y <=16. Can you please throw some light in the context of OG question....

TIA ~ Yogesh

Check out this thread:
ps-right-triangle-pqr-71597.html?hilit=how%20many%20triangles#p830694
It discusses what to do in case of a larger range.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Senior Manager Joined: 12 Dec 2010 Posts: 282 Concentration: Strategy, General Management GMAT 1: 680 Q49 V34 GMAT 2: 730 Q49 V41 GPA: 4 WE: Consulting (Other) Followers: 9 Kudos [?]: 46 [0], given: 23 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 27 May 2011, 10:15 VeritasPrepKarishma wrote: yogesh1984 wrote: Bunuel, 1- Collinear point issue will arise in case of overlapping values of x, y ? (as in here we have all the overlapping range for x & y). Also since range here is small for both x, y (ie.=3) we can manually calculate the collinear points but in case of large range how do we go about it ? should it be = # overlapping points on X + # overlapping points on Y + # diagonal points (which will essentially be min(# overlapping points on X , Y) -1 )-- Not so sure on this though ... 2- I see a similar Question in OG12 PS Q.229- The method explained here in the above example does not seems to fit too well there. basically in the question we have -4 <= X <=5, 6<= Y <=16. Can you please throw some light in the context of OG question.... TIA ~ Yogesh Check out this thread: ps-right-triangle-pqr-71597.html?hilit=how%20many%20triangles#p830694 It discusses what to do in case of a larger range. Yeah thanks for this (however i had found this through customized search) however I am still struggling with my original question- consider this if I have range say 1<=x<=5 and -9<=y<=3 then (instead of 1<x<=3, 1<=y<=3 as stated in the above question) then how do I about (the question explained there is for right angle triangle- slightly different case than this one).... I hope i am not complicating too much here. _________________ My GMAT Journey 540->680->730! ~ When the going gets tough, the Tough gets going! Senior Manager Joined: 12 Dec 2010 Posts: 282 Concentration: Strategy, General Management GMAT 1: 680 Q49 V34 GMAT 2: 730 Q49 V41 GPA: 4 WE: Consulting (Other) Followers: 9 Kudos [?]: 46 [0], given: 23 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 07 Jun 2011, 06:18 Thanks a bunch Bunuel for all this nice set of questions (really helped me to do more and more!). However Just one note to all those who are trying this set - Please solve these sets once you have gained some confidence ! _________________ My GMAT Journey 540->680->730! ~ When the going gets tough, the Tough gets going! Manager Joined: 16 May 2011 Posts: 204 Concentration: Finance, Real Estate GMAT Date: 12-27-2011 WE: Law (Law) Followers: 1 Kudos [?]: 76 [0], given: 37 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 09 Jun 2011, 03:50 Bunuel wrote: 8. How many positive integers less than 10,000 are such that the product of their digits is 210? (A) 24 (B) 30 (C) 48 (D) 54 (E) 72 210=1*2*3*5*7=1*6*5*7. (Only 2*3 makes the single digit 6). So, four digit numbers with combinations of the digits {1,6,5,7} and {2,3,5,7} and three digit numbers with combinations of digits {6,5,7} will have the product of their digits equal to 210. {1,6,5,7} # of combinations 4!=24 {2,3,5,7} # of combinations 4!=24 {6,5,7} # of combinations 3!=6 24+24+6=54. Answer: D. 10. How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤3 and 1≤y≤3? (A) 72 (B) 76 (C) 78 (D) 80 (E) 84 It would be better if you draw it while reading this explanation. With the restriction given (1≤x≤3 and 1≤y≤3) we get 9 points, from which we can form the triangle: (1,1), (1,2), (1,3), (2,1)... From this 9 points any three (9C3) will form the triangle BUT THE SETS of three points which are collinear. We'll have 8 sets of collinear points of three: 3 horizontal {(1,1),(2,1),(3,1)} {(1,2)(2,2)(3,2)}... 3 vertical 2 diagonal {(1,1)(2,2)(3,3)}{(1,3)(2,2)(3,1)} So the final answer would be; 9C3-8=84-8=76 Answer: B. Hope it's clear. i just want to thank you bunuel but i still have some question to make it clear: lets say that i was given 5 points for y and the same 5 for x: so it will be choosing 25c3- 5 vertical-5 horizontal and 2 diagonals and to make it even more difficult: lets say that there where 6 points for x and 3 for y: so it will be 18c3-6 horizontal and 3 vertical - 2 diagonals or that is a bit surprise in here? hope you can clarify Manager Joined: 16 May 2011 Posts: 204 Concentration: Finance, Real Estate GMAT Date: 12-27-2011 WE: Law (Law) Followers: 1 Kudos [?]: 76 [0], given: 37 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 12 Jun 2011, 09:27 if anyone can help please to clarify the methos: let's say that the Q was: How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6? how will it be solved: will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different. thank's in advance Senior Manager Joined: 12 Dec 2010 Posts: 282 Concentration: Strategy, General Management GMAT 1: 680 Q49 V34 GMAT 2: 730 Q49 V41 GPA: 4 WE: Consulting (Other) Followers: 9 Kudos [?]: 46 [0], given: 23 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 12 Jun 2011, 12:09 dimri10 wrote: if anyone can help please to clarify the methos: let's say that the Q was: How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6? how will it be solved: will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different. thank's in advance While I seriously doubt whether one could encounter such long range question (esp. because calculating # diagonals is going to be little tricky here) unless you are shooting for 51 in quant. That said let me try my hands- Think about when it will be horizontal collinear- all the y values are same for a given set of X values. so we have 6 values where Y can be same (it has to be integer coordinate)- so total # horizontal collinear points- 6 You can have similar argument for vertical (constant X and vary Y) set of collinear points- 6 For # diagonals (please refer tot the attachment, I sketched only one side of the diagonals ) - you should be able to count the numbers now. For one side it comes out that we will have 16 such pairs (of 3 points) so by symmetry you need to multiply by 2. SO a total # diagonals will be 32. I hope that helps. ~ Yogesh Attachments Diagonals.xlsx [8.84 KiB] Downloaded 71 times  To download please login or register as a user _________________ My GMAT Journey 540->680->730! ~ When the going gets tough, the Tough gets going! Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7125 Location: Pune, India Followers: 2138 Kudos [?]: 13691 [2] , given: 222 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 12 Jun 2011, 18:17 2 This post received KUDOS Expert's post dimri10 wrote: if anyone can help please to clarify the methos: let's say that the Q was: How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6? how will it be solved: will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different. thank's in advance I think your question is quite similar to yogesh1984's question above. I missed answering his question (thought of doing it later due to the diagram involved but it skipped my mind). Anyway, let me show you how I would solve such a question. Both the questions can be easily answered using this method. How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6? Check out this post for the solution: http://www.veritasprep.com/blog/2011/09 ... mment-2495 *Edited the post to fix the problem. Attachments Ques2.jpg [ 16.67 KiB | Viewed 5990 times ] _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Last edited by VeritasPrepKarishma on 19 Mar 2012, 02:40, edited 1 time in total.
Manager
Joined: 16 May 2011
Posts: 204
Concentration: Finance, Real Estate
GMAT Date: 12-27-2011
WE: Law (Law)
Followers: 1

Kudos [?]: 76 [0], given: 37

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

12 Jun 2011, 23:37
you did great. wow. that's a briliant explenation. thank's Karishma . it deserves more than 1 kudos, but unfortunatly there's only 1.
Manager
Joined: 12 Aug 2010
Posts: 66
Schools: UNC Kenan-Flagler, IU Kelley, Emory GSB
WE 1: 5 yrs
Followers: 3

Kudos [?]: 27 [0], given: 50

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

11 Jul 2011, 08:08
Bunuel wrote:
5. Mrs. Smith has been given film vouchers. Each voucher allows the holder to see a film without charge. She decides to distribute them among her four nephews so that each nephew gets at least two vouchers. How many vouchers has Mrs. Smith been given if there are 120 ways that she could distribute the vouchers?
(A) 13
(B) 14
(C) 15
(D) 16
(E) more than 16

Clearly there are more than 8 vouchers as each of four can get at least 2. So, basically 120 ways vouchers can the distributed are the ways to distribute $$x-8$$ vouchers, so that each can get from zero to $$x-8$$ as at "least 2", or 2*4=8, we already booked. Let $$x-8$$ be $$k$$.

In how many ways we can distribute $$k$$ identical things among 4 persons? Well there is a formula for this but it's better to understand the concept.

Let $$k=5$$. And imagine we want to distribute 5 vouchers among 4 persons and each can get from zero to 5, (no restrictions).

Consider:

$$ttttt|||$$
We have 5 tickets (t) and 3 separators between them, to indicate who will get the tickets:

$$ttttt|||$$
Means that first nephew will get all the tickets,

$$|t|ttt|t$$
Means that first got 0, second 1, third 3, and fourth 1

And so on.

How many permutations (arrangements) of these symbols are possible? Total of 8 symbols (5+3=8), out of which 5 $$t$$'s and 3 $$|$$'s are identical, so $$\frac{8!}{5!3!}=56$$. Basically it's the number of ways we can pick 3 separators out of 5+3=8: $$8C3$$.

So, # of ways to distribute 5 tickets among 4 people is $$(5+4-1)C(4-1)=8C3$$.

For $$k$$ it will be the same: # of ways to distribute $$k$$ tickets among 4 persons (so that each can get from zero to $$k$$) would be $$(K+4-1)C(4-1)=(k+3)C3=\frac{(k+3)!}{k!3!}=120$$.

$$(k+1)(k+2)(k+3)=3!*120=720$$. --> $$k=7$$. Plus the 8 tickets we booked earlier: $$x=k+8=7+8=15$$.

P.S. Direct formula:

The total number of ways of dividing n identical items among r persons, each one of whom, can receive 0,1,2 or more items is $$n+r-1C_{r-1}$$.

The total number of ways of dividing n identical items among r persons, each one of whom receives at least one item is $$n-1C_{r-1}$$.

Hope it helps.

Awesome...hats off...this is totally new to me...widens my realm..and strengthens my reasoning...thanks a lot
_________________

The night is at its darkest just before the dawn... never, ever give up!

Manager
Status: Bell the GMAT!!!
Affiliations: Aidha
Joined: 16 Aug 2011
Posts: 183
Location: Singapore
Concentration: Finance, General Management
GMAT 1: 680 Q46 V37
GMAT 2: 620 Q49 V27
GMAT 3: 700 Q49 V36
WE: Other (Other)
Followers: 6

Kudos [?]: 72 [0], given: 43

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

21 Aug 2011, 07:56
Economist wrote:
yangsta,
i liked your solution for 4. I didnt know we can use the definition of linear equation to solve such problems.

I used the guessing method.
we have two relationships...6--30 and 24---60.
This means when R is increased 4 times, S increases 2 times, so if R is increased 2 times S will increase 1 time.
Now, 30*3 ~ 100, so 3 times increase in S will have atleast a 6 times increase in R, i.e. R should be something greater than 36..closest is 48

Another method (let me call it intuition method) :

6 on scale R corresponds to 30 on scale S and 24 on scale R corresponds to 60 on scale S. If we notice the relationship, we will see that for every 6 points on scale R, 10 points move on scale S. So, 90 points on scale S corresponds to 42 points on Scale R and another 6 points of scale S for another 10 points on scale R. Hence 100 on scale S corresponds to 42+6 = 48 on scale R.

I hope I am making sense
_________________

If my post did a dance in your mind, send me the steps through kudos :)

My MBA journey at http://mbadilemma.wordpress.com/

Intern
Joined: 21 Jan 2012
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

22 Jan 2012, 03:49
VeritasPrepKarishma wrote:
dimri10 wrote:
if anyone can help please to clarify the methos:

let's say that the Q was:
How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?
how will it be solved:
will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different.

I think your question is quite similar to yogesh1984's question above. I missed answering his question (thought of doing it later due to the diagram involved but it skipped my mind).
Anyway, let me show you how I would solve such a question. Both the questions can be easily answered using this method.

How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?

Ok, so we have a total of 36 co-ordinates (as shown below by the red and black dots). We need to make triangles so we need to select a triplet of co-ordinates out of these 36 which can be done in 36C3 ways. Out of these, we need to get rid of those triplets where the points are collinear. How many such triplets are there?
Look at the diagram:

Attachment:
Ques2.jpg

The Black dots are the outermost points. Red dots are the inside points. Now each of these red dots is the center point for 4 sets of collinear points (as shown by the red arrows). Hence the 4*4 = 16 red dots will make 16*4 = 64 triplets of collinear points.
These 64 triplets account for all collinear triplets except those lying on the edges. Each of the 4 edges will account for 4 triplets of collinear points shown by the black arrows. Hence, there will be another 4*4 = 16 triplets of collinear points.
Total triplets of collinear points = 64 + 16 = 80
Therefore, total number of triangles you can make = 36C3 - 80

Similarly you can work with 1<=x<=5 and -9<=y<=3.
The number of red dots in this case = 11*3 = 33
So number of collinear triplets represented by red arrows will be = 33*4 = 132
Number of black arrows will be 3 + 11 + 3 + 11 = 28
Total triplets of collinear points = 132 + 28 = 160
Total triangles in this case = 65C3 - 160

Ma'am,
It would like to point out tht the resoning given is wrong. the triplets need not necessarily be adjacent. tht's the flaw.
my way:
no: of collinear points=?
horizontal and vertical lines both give the same no: and each line of 6 points gives 6C3 possibs.
hence horz and vert. lines give a total of 2*6*6C3.
next 2 diagonals give same no: of such possibs.
consider any diagonal direction. it gives 3,4,5,6,5,4,3 collinear points along 6 parallel lines corresponding to any diagonalic direction and each of the points gives us their corresponding triples-3C3+4C3+5C3+6C3+5C3+4C3+3C3.

along 2 such dirs. this adds up to 2*(2*(3C3+4C3+5C3)+6C3).

total no: of line forming selections= 2*6*6C3+ 2*(2*(3C3+4C3+5C3)+6C3).
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7125
Location: Pune, India
Followers: 2138

Kudos [?]: 13691 [0], given: 222

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

22 Jan 2012, 04:08
akhileshankala wrote:
It would like to point out tht the resoning given is wrong. the triplets need not necessarily be adjacent. tht's the flaw.
my way:
no: of collinear points=?
horizontal and vertical lines both give the same no: and each line of 6 points gives 6C3 possibs.
hence horz and vert. lines give a total of 2*6*6C3.
next 2 diagonals give same no: of such possibs.
consider any diagonal direction. it gives 3,4,5,6,5,4,3 collinear points along 6 parallel lines corresponding to any diagonalic direction and each of the points gives us their corresponding triples-3C3+4C3+5C3+6C3+5C3+4C3+3C3.

along 2 such dirs. this adds up to 2*(2*(3C3+4C3+5C3)+6C3).

total no: of line forming selections= 2*6*6C3+ 2*(2*(3C3+4C3+5C3)+6C3).

Yes, I did miss out on the non-adjacent collinear points! And on the face of it, your calculation looks correct. I will put some more time on this variation tomorrow (since today is Sunday!) and get back if needed.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Senior Manager Joined: 12 Dec 2010 Posts: 282 Concentration: Strategy, General Management GMAT 1: 680 Q49 V34 GMAT 2: 730 Q49 V41 GPA: 4 WE: Consulting (Other) Followers: 9 Kudos [?]: 46 [0], given: 23 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 14 Mar 2012, 05:37 akhileshankala wrote: VeritasPrepKarishma wrote: dimri10 wrote: if anyone can help please to clarify the methos: let's say that the Q was: How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6? how will it be solved: will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different. thank's in advance I think your question is quite similar to yogesh1984's question above. I missed answering his question (thought of doing it later due to the diagram involved but it skipped my mind). Anyway, let me show you how I would solve such a question. Both the questions can be easily answered using this method. How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6? Ok, so we have a total of 36 co-ordinates (as shown below by the red and black dots). We need to make triangles so we need to select a triplet of co-ordinates out of these 36 which can be done in 36C3 ways. Out of these, we need to get rid of those triplets where the points are collinear. How many such triplets are there? Look at the diagram: Attachment: Ques2.jpg The Black dots are the outermost points. Red dots are the inside points. Now each of these red dots is the center point for 4 sets of collinear points (as shown by the red arrows). Hence the 4*4 = 16 red dots will make 16*4 = 64 triplets of collinear points. These 64 triplets account for all collinear triplets except those lying on the edges. Each of the 4 edges will account for 4 triplets of collinear points shown by the black arrows. Hence, there will be another 4*4 = 16 triplets of collinear points. Total triplets of collinear points = 64 + 16 = 80 Therefore, total number of triangles you can make = 36C3 - 80 Similarly you can work with 1<=x<=5 and -9<=y<=3. The number of red dots in this case = 11*3 = 33 So number of collinear triplets represented by red arrows will be = 33*4 = 132 Number of black arrows will be 3 + 11 + 3 + 11 = 28 Total triplets of collinear points = 132 + 28 = 160 Total triangles in this case = 65C3 - 160 Ma'am, It would like to point out tht the resoning given is wrong. the triplets need not necessarily be adjacent. tht's the flaw. my way: no: of collinear points=? horizontal and vertical lines both give the same no: and each line of 6 points gives 6C3 possibs. hence horz and vert. lines give a total of 2*6*6C3. next 2 diagonals give same no: of such possibs. consider any diagonal direction. it gives 3,4,5,6,5,4,3 collinear points along 6 parallel lines corresponding to any diagonalic direction and each of the points gives us their corresponding triples-3C3+4C3+5C3+6C3+5C3+4C3+3C3. along 2 such dirs. this adds up to 2*(2*(3C3+4C3+5C3)+6C3). total no: of line forming selections= 2*6*6C3+ 2*(2*(3C3+4C3+5C3)+6C3). Can you please elaborate on the bolded part in details... _________________ My GMAT Journey 540->680->730! ~ When the going gets tough, the Tough gets going! Manager Joined: 09 Mar 2012 Posts: 97 Location: India GMAT 1: 740 Q50 V39 GPA: 3.4 WE: Business Development (Manufacturing) Followers: 2 Kudos [?]: 18 [0], given: 12 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 14 Mar 2012, 07:48 This is a 6x6 square. For each diagonal of this square, you have 8 parallel lines, you can draw within the square by joining the vertices that lies on the edges of the square. eg: Join (1,2) & (2,1); (1,3) & (3,1); (1,4) & (4,1); (1,5) & (5,1); to get 4 parallel lines along the diagonal (1,6)-(6,1) Similarly you can get 4 lines on the other side of the diagonal. Of these, (line joining (1,2) to (2,1) is of no use to us since it contains only 2 points within the square) the line joining point (1,3) & (3,1) contains total of 3 integer co-ordinates, the line joining point (1,4) & (4,1) contains total of 4 integer co-ordinates, and so on..... Any 3 points that you select from these lines will be collinear and not form a traingle. Thus, you have 3,4,5,6,5,4,3 points collinear along the lines parallel to the diagonal. Rest as akhilesh has mentioned. You may draw a figure by plotting these points. My 1st post on this forum, so Apologies for the weird explanation. Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7125 Location: Pune, India Followers: 2138 Kudos [?]: 13691 [1] , given: 222 Re: NEW SET of good PS(3) [#permalink] ### Show Tags 19 Mar 2012, 02:35 1 This post received KUDOS Expert's post yogesh1984 wrote: Can you please elaborate on the bolded part in details... Check out this post. I have explained this question in detail in this post. It fixes the problem my above given solution had. http://www.veritasprep.com/blog/2011/09 ... o-succeed/ _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Senior Manager
Joined: 12 Dec 2010
Posts: 282
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)
Followers: 9

Kudos [?]: 46 [0], given: 23

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

19 Mar 2012, 08:56
VeritasPrepKarishma wrote:
yogesh1984 wrote:

Can you please elaborate on the bolded part in details...

Check out this post. I have explained this question in detail in this post. It fixes the problem my above given solution had.

http://www.veritasprep.com/blog/2011/09 ... o-succeed/

Aah that one is awesome !! bole to crystal clear now
_________________

My GMAT Journey 540->680->730!

~ When the going gets tough, the Tough gets going!

Intern
Joined: 01 Aug 2011
Posts: 23
Followers: 0

Kudos [?]: 7 [0], given: 15

Re: NEW SET of good PS(3) [#permalink]

### Show Tags

06 Jul 2012, 01:12
Shouldn't the answer to Question 2 be B?
Re: NEW SET of good PS(3)   [#permalink] 06 Jul 2012, 01:12

Go to page   Previous    1   2   3   4   5    Next  [ 92 posts ]

Similar topics Replies Last post
Similar
Topics:
300 New Set of Mixed Questions!!! 181 01 Apr 2013, 06:48
319 New Algebra Set!!! 170 18 Mar 2013, 06:56
Very good PS set with answers! 1 22 Feb 2011, 15:28
PS3 Gmat prep 2 10 Apr 2010, 05:06
87 Good set of PS 2 108 16 Oct 2009, 19:00
Display posts from previous: Sort by

# NEW SET of good PS(3)

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.