Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Oct 2014, 02:30

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Number properties question

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 30 Mar 2011
Posts: 20
Followers: 0

Kudos [?]: 4 [0], given: 0

Number properties question [#permalink] New post 06 Apr 2011, 15:18
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

50% (01:58) correct 50% (04:15) wrong based on 2 sessions
Hi,

Question is as follows:

If n is a positive integer and n^2 is divisible by 96, then the largest positive integer that must divide n is...?

My method was to prime factorize 96 then remove any matching factors and multiply these together to get the answer (24) - not sure about the theory behind it though and if anyone has any rules or theories about factors of x compared to factors of x^2 and x^3 etc. that would be very interesting

Thanks
Manager
Manager
avatar
Joined: 17 Jan 2011
Posts: 243
Followers: 1

Kudos [?]: 22 [0], given: 4

Re: Number properties question [#permalink] New post 06 Apr 2011, 15:46
Lets find the minimum value of n for n^2 to be divisible by 96
=>96 = 2^5 x 3
=>n^2 should have 2^5 x 3
=> so, minimum value of integer n can be 2^3 x 3
(2^3 x 3)^2/96 = 6
I guess, the largest integer that divides n is the number itself i.e. 2^3 x 3 or 24
_________________

Good Luck!!!

***Help and be helped!!!****

SVP
SVP
avatar
Joined: 16 Nov 2010
Posts: 1691
Location: United States (IN)
Concentration: Strategy, Technology
Followers: 30

Kudos [?]: 297 [0], given: 36

Premium Member Reviews Badge
Re: Number properties question [#permalink] New post 06 Apr 2011, 16:57
I would also like to know this in a detailed manner.

For example - @ravsg, could you please explain why this is true - "so, minimum value of integer n can be 2^3 x 3"

Why not 2^2 * 3, or 2 * 3, I'm a bit lost because we're talking about "minimum value", right ?
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 30 Mar 2011
Posts: 20
Followers: 0

Kudos [?]: 4 [0], given: 0

Re: Number properties question [#permalink] New post 06 Apr 2011, 17:23
yes, is there a rule? what if it was n^3 or n^4 - I can see that you can work through the question since it's quite straight forward but i would have no idea how to do this if the numbers were a lot more complex
Director
Director
avatar
Joined: 01 Feb 2011
Posts: 770
Followers: 14

Kudos [?]: 58 [0], given: 42

CAT Tests
Re: Number properties question [#permalink] New post 06 Apr 2011, 17:31
n^2 = 96(..)

= (2 ^5)(3)(...)
to make it a perfect square there has to to atleast one more 2 and 3 in n^2.

=> n will be atleast 2^3*3 = 24

so largest positive integer that must divide n is 24.
Manager
Manager
avatar
Joined: 17 Jan 2011
Posts: 243
Followers: 1

Kudos [?]: 22 [0], given: 4

Re: Number properties question [#permalink] New post 06 Apr 2011, 18:07
subhashghosh wrote:
I would also like to know this in a detailed manner.

For example - @ravsg, could you please explain why this is true - "so, minimum value of integer n can be 2^3 x 3"

Why not 2^2 * 3, or 2 * 3, I'm a bit lost because we're talking about "minimum value", right ?


Lets assume n to be 2^2 * 3 i.e. 12
Now n^2
=> 12^2/96
=> 144/96
remainder is 48. for n to be divisible by 96, remainder should be zero.

same method can prove that 2*3 doesn't satisfy. On the contrary, the question can be why not a large value like 2^10*3^2 - this part would depend on the answer choices listed, without list of ans choices, we can solve for a min value.
_________________

Good Luck!!!

***Help and be helped!!!****

Manager
Manager
avatar
Joined: 17 Jan 2011
Posts: 243
Followers: 1

Kudos [?]: 22 [0], given: 4

Re: Number properties question [#permalink] New post 06 Apr 2011, 18:22
Alternate method, just thought of it - may not be the best way.

=>n^2 / 96
=> n^2 / (2^5 x 3^1)
=> n^2 x 2^(-5) x 3 ^ (-1) ---- call it eq A

For the above to be divisible (leave remainder=zero), there should be no negative powers left after addition/subtraction of powers

1) Let n be 2^2 x 3
n^2 = (2^2 x 3)^2
=> 2^4 x 3^2
Substituting above in eq A for n^2
=>2^4 x 3^2 x 2^(-5) x 3 ^ (-1)
=>2^(4 - 5) x 3^(2 - 1)
=> 2^(-1) x 3^1 or 3/2
so the assumed value of n is incorrect, we can increase the number of 2's in n so that denominator is 1

Another method that crossed my mind, may look silly though -
Taking log of n^2 / (2^5 x 3^1), the result should be >=0
=>2log(n) - 5log2 - log3
substituting n with (2^3 x 3)^2 i.e. 2^6 x 3^2
=>6log2 + 2log3 - 5log2 - log3
=> log2 + log3
or log (2 x 3)
removing log => 6
positive value indicates it is

For reference,
log of a^b = b log a
log of a x b = log a + log b
log of a/b = log a - log b
_________________

Good Luck!!!

***Help and be helped!!!****

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 2045
Followers: 128

Kudos [?]: 952 [0], given: 376

Re: Number properties question [#permalink] New post 07 Apr 2011, 00:52
chloeholding wrote:
Hi,

Question is as follows:

If n is a positive integer and n^2 is divisible by 96, then the largest positive integer that must divide n is...?

My method was to prime factorize 96 then remove any matching factors and multiply these together to get the answer (24) - not sure about the theory behind it though and if anyone has any rules or theories about factors of x compared to factors of x^2 and x^3 etc. that would be very interesting

Thanks


n^2 is divisible by 96 i.e. 2^5*3

What is minimum value for n^2 i.e. which is the smallest number must be multiplied by 2^5*3 to make it a perfect square?

We know the powers of all prime numbers must be even in a perfect square.
2^5 if multiplied by 2 will result in even power of 2 i.e. 2^6
3^1 if multiplied by 3 will result in even power of 3 i.e. 3^2

Thus, we multiplied 2^5*3 by 2*3. n^2 becomes 2^6*3^2, which a square of 2^3*3

(2^3*3)^2=2^6*3^2

Thus, we have our minimum value for n.
2^3*3=24

The largest integer that divides 24 is 24 itself. Smaller integers would be 2,12,4,6,1. Ans: 24(Supposedly)

Now, to add a little more to the confusion.

It is possible that n^2=((2^3*3)^2)^2 \hspace{} OR \hspace{2} ((2^3*3)^{25})^2
Making n=(2^3*3)^2 \hspace{} OR \hspace{2} (2^3*3)^{25} \hspace{2}
Eventually making largest integer that could divide n=(2^3*3)^2 OR \hspace{2} (2^3*3)^{25}

We don't know the exact value of n. Thus, we need to consider it as minimum possible because the question asks the largest positive integer that MUST divide n.

Imagine we answered it as (2^3*3)^{25} but in reality, n=(2^3*3), our answer would be wrong because (2^3*3)^{25} doesn't divide (2^3*3).

At the same time, if we answered it as (2^3*3), it will divide "n", alright. But, even here we can't be too sure whether this is indeed the LARGEST integer that is dividing "n". What if n=(2^3*3)^{25}.

I would have liked the question if it read:
"If n is a positive integer and n^2 is the smallest integer divisible by 96, then the largest positive integer that must divide n will be?
_________________

~fluke

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4876
Location: Pune, India
Followers: 1149

Kudos [?]: 5348 [0], given: 165

Re: Number properties question [#permalink] New post 07 Apr 2011, 19:19
Expert's post
subhashghosh wrote:
I would also like to know this in a detailed manner.

For example - @ravsg, could you please explain why this is true - "so, minimum value of integer n can be 2^3 x 3"

Why not 2^2 * 3, or 2 * 3, I'm a bit lost because we're talking about "minimum value", right ?


@subhashghosh - As per your request, I am providing the explanation to this question though I think fluke has already done a good job above. I don't think there is much left to add.

Anyway, since n^2 is a multiple of 96,
n^2 = 96*k = 2^5 * 3 * k (k is a positive integer)

Notice that it is n^2 i.e. square of a positive integer so powers of all prime factors of n^2 must be even. So k must be at least 2*3 so that
n^2 is at least 2^6 * 3^2 (note that powers of 2 and 3 have become even now. Also, this is the smallest value of n^2. If k > 2*3, n^2 would be greater)

(If this concept is unclear, check: http://www.veritasprep.com/blog/2010/12 ... t-squares/)

Since n^2 is at least 2^6 * 3^2, n is at least 2^3 * 3. So largest number that must divide n is 24. Note that a greater number could divide n (depending on the value of k)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 30 Mar 2011
Posts: 20
Followers: 0

Kudos [?]: 4 [0], given: 0

Re: Number properties question [#permalink] New post 08 Apr 2011, 00:17
Hi Fluke,

Thanks a lot for your explanation, really helped.
However, how did you find the ^25 as the other possible value of n^2?

Thanks
Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 2045
Followers: 128

Kudos [?]: 952 [0], given: 376

Re: Number properties question [#permalink] New post 08 Apr 2011, 01:01
chloeholding wrote:
Hi Fluke,

Thanks a lot for your explanation, really helped.
However, how did you find the ^25 as the other possible value of n^2?

Thanks


n^2 can't be (2^3*3)^{25}

n^2 should be any even power of (2^3*3), say (2^3*3)^{2k} where k is a positive integer. Because, n^2 is a perfect square and a perfect square is always an even power of an integer.

2^2=4
3^2=9
(2^2)^2=16
(3^2)^2=81

Thus, n^2 can be ((2^3*3)^{25})^2.
If n^2=((2^3*3)^{25})^2, then n=\sqrt{((2^3*3)^{25})^2}=(2^3*3)^{25}

Now,
Question says; n^2 is divisible by 96.
n=(2^3*3)^{25}
n^2=((2^3*3)^{25})^2.
((2^3*3)^{25})^2 is divisible by 96 because (2^3*3)^{2} is divisible by 96.

What will be the largest integer that will divide "n". The number itself, right.
Largest integer=n=(2^3*3)^{25}

Well, this answer is not correct though because the question assumes the smallest value for n^2=(2^3*3)^2, which makes the largest n=2^3*3 I don't really understand, why so?

But, hey!!! This question is from GMATPrep and it is a general belief that GMATPrep questions are always logically correct. You may as well ignore all this gibberish.
_________________

~fluke

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4876
Location: Pune, India
Followers: 1149

Kudos [?]: 5348 [0], given: 165

Re: Number properties question [#permalink] New post 08 Apr 2011, 03:27
Expert's post
fluke wrote:

Well, this answer is not correct though because the question assumes the smallest value for n^2=(2^3*3)^2, which makes the largest n=2^3*3 I don't really understand, why so?

But, hey!!! This question is from GMATPrep and it is a general belief that GMATPrep questions are always logically correct. You may as well ignore all this gibberish.


Focus on the difference between 'must' and 'can'

Say, if I tell you that a = 20k (k is a positive integer)
My question is 'Which is the largest number by which 'a' must be divisible?'
From this information, you can say that 'a' must be divisible by 20. It could be divisible by 40, 80, 120, 808080 etc
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Re: Number properties question   [#permalink] 08 Apr 2011, 03:27
    Similar topics Author Replies Last post
Similar
Topics:
1 Number Properties question aiming4mba 3 21 Mar 2011, 20:36
4 Experts publish their posts in the topic If x is equal to the sum of the integers from 30 to 50, incl MasterGMAT12 3 19 Dec 2010, 15:14
Number properties (question 4) feruz77 3 16 Oct 2010, 23:41
5 Experts publish their posts in the topic Number properties question roceeet 24 26 Jan 2010, 12:02
properties of numbers question darlameow 1 19 Aug 2008, 10:00
Display posts from previous: Sort by

Number properties question

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.