Find all School-related info fast with the new School-Specific MBA Forum

It is currently 20 Oct 2014, 17:17

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Number Properties: Tips and hints

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3601

Kudos [?]: 28654 [4] , given: 2808

Number Properties: Tips and hints [#permalink] New post 04 Jun 2014, 11:25
4
This post received
KUDOS
Expert's post
25
This post was
BOOKMARKED

Number Properties: Tips and hints



!
This post is a part of the Quant Tips and Hints by Topic Directory focusing on Quant topics and providing examples of how to approach them. Most of the questions are above average difficulty.

EVEN/ODD
1. An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2 without a remainder.
2. An odd number is an integer that is not evenly divisible by 2.
3. According to the above both negative and positive integers can be even or odd.

ZERO:
1. 0 is an integer.
2. 0 is an even integer. An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2 without a remainder and as zero is evenly divisible by 2 then it must be even.
3. 0 is neither positive nor negative integer (the only one of this kind).
4. 0 is divisible by EVERY integer except 0 itself, (or, which is the same, zero is a multiple of every integer except zero itself).

PRIME NUMBERS:
1. 1 is not a prime, since it only has one divisor, namely 1.
2. Only positive numbers can be primes.
3. There are infinitely many prime numbers.
4. the only even prime number is 2. Also 2 is the smallest prime.
5. All prime numbers except 2 and 5 end in 1, 3, 7 or 9.

PERFECT SQUARES
1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;
2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;
3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);
4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: 36=2^2*3^2, powers of prime factors 2 and 3 are even.

IRRATIONAL NUMBERS
1. An irrational number is any real number that cannot be expressed as a ratio of integers.
2. The square root of any positive integer is either an integer or an irrational number. So, \sqrt{x}=\sqrt{integer} cannot be a fraction, for example it cannot equal to 1/2, 3/7, 19/2, ... It MUST be an integer (0, 1, 2, 3, ...) or irrational number (for example \sqrt{2}, \sqrt{3}, \sqrt{17}, ...).

This week's PS question
This week's DS Question

Theory on Number Properties: math-number-theory-88376.html

DS Number Properties Problems to practice: search.php?search_id=tag&tag_id=38
PS Number Properties Problems to practice: search.php?search_id=tag&tag_id=59


Please share your number properties tips below and get kudos point. Thank you.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Kaplan Promo CodeKnewton GMAT Discount CodesGMAT Pill GMAT Discount Codes
Intern
Intern
avatar
Joined: 22 Feb 2012
Posts: 3
Followers: 0

Kudos [?]: 2 [0], given: 98

Re: Number Properties: Tips and hints [#permalink] New post 24 Jun 2014, 22:15
2
This post was
BOOKMARKED
[wrapimg=]PERFECT SQUARES
1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);[/wrapimg]

I was learning the above points, while a confusion rose. I'd be grateful if you could explain.

We know that 100 is a perfect square (10^2)
If we Prime factorize 100, we get

100= 2*2*5*5


number 1 tips says that a perfect square has odd number of distinct factors. Here 100 has two distinct factors (2,5). How that can be explained ?

number 3 tips says that a perfect square always has an odd number of odd factors and even number of even factors. Here we see, 100 has two 5's which is even number.

Even if we see number 3 tips as, a perfect square always has an odd number of DISTINCT odd factors and even number of DISTINCT even factors., we find that, 100 has only ONE DISTINCT even factor which is 2

Please explain.
Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3601

Kudos [?]: 28654 [2] , given: 2808

Re: Number Properties: Tips and hints [#permalink] New post 25 Jun 2014, 01:42
2
This post received
KUDOS
Expert's post
Tanvr wrote:
[wrapimg=]PERFECT SQUARES
1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);[/wrapimg]

I was learning the above points, while a confusion rose. I'd be grateful if you could explain.

We know that 100 is a perfect square (10^2)
If we Prime factorize 100, we get

100= 2*2*5*5


number 1 tips says that a perfect square has odd number of distinct factors. Here 100 has two distinct factors (2,5). How that can be explained ?

number 3 tips says that a perfect square always has an odd number of odd factors and even number of even factors. Here we see, 100 has two 5's which is even number.

Even if we see number 3 tips as, a perfect square always has an odd number of DISTINCT odd factors and even number of DISTINCT even factors., we find that, 100 has only ONE DISTINCT even factor which is 2

Please explain.


2 and 5 are prime factors of 100. The total number of factors of 100=2^2*5^2 is (2+1)(2+1)=9=odd: 1, 2, 4, 5, 10, 20, 25, 50, 100. Out of these 9 factors three are odd (1, 5, and 25) and 6 are even (2, 4, 10, 20, 50, 100).

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Intern
Intern
avatar
Joined: 07 Jul 2014
Posts: 12
Followers: 0

Kudos [?]: 4 [1] , given: 47

CAT Tests
Re: Number Properties: Tips and hints [#permalink] New post 23 Jul 2014, 11:29
1
This post received
KUDOS
1
This post was
BOOKMARKED
Can I suggest a few new topics? Specifically Geometry, word problems, and combinatrics/probability?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23348
Followers: 3601

Kudos [?]: 28654 [0], given: 2808

Re: Number Properties: Tips and hints [#permalink] New post 23 Jul 2014, 11:51
Expert's post
1 KUDOS received
Intern
Intern
avatar
Joined: 27 Aug 2014
Posts: 28
GMAT Date: 09-27-2014
Followers: 1

Kudos [?]: 3 [1] , given: 25

CAT Tests
Number Properties: Tips and hints [#permalink] New post 27 Aug 2014, 05:37
1
This post received
KUDOS
3
This post was
BOOKMARKED
If progressions comes under this topic, would like to add this tip.

In the specific case of sum to n1 terms being equal to sum to n2 terms of the same arithmetic progression, the sum of the term numbers which exhibit equal sums is constant for the given evenly spaced set of numbers.

(S3 denotes Sum of the first three terms of the evenly spaced set.)

1.
Q: if sum to 11 terms equal sum to 19 terms in an evenly spaced set, what is the sum to 30 terms for this series?
A: S11 = S19; so S0 = S30. Since S0 = 0, S30 = 0.

2.
This happens because the arithmetic progression's negative terms cancel out the positive terms.

Also, if the series has a zero in it, the sum will be equal for two terms such that one term number will be odd and the other will be even.
Ex.: -10, -5, 0, 5, 10.....

And if the series does not have a zero in it, the sum will be equal for two terms such that both term numbers will be either odd or even.

Ex.: -12, -4, 4, 12......
Intern
Intern
avatar
Joined: 27 Aug 2014
Posts: 28
GMAT Date: 09-27-2014
Followers: 1

Kudos [?]: 3 [0], given: 25

CAT Tests
Number Properties: Tips and hints [#permalink] New post 27 Aug 2014, 05:52
3
This post was
BOOKMARKED
Another tip,

If B is 1/x times more than A, then A is 1/(x+1) times lesser than B.

This is especially useful in averages, profit and loss, time rate questions.

Example:

If B's wage is 25% more than A's wage, then what is A's wage in terms of B?

B is 1/4 times more than A, so A will be 1/5 or 20% lesser than B. i.e., A = 80% of B
Intern
Intern
avatar
Joined: 27 Aug 2014
Posts: 28
GMAT Date: 09-27-2014
Followers: 1

Kudos [?]: 3 [0], given: 25

CAT Tests
Re: Number Properties: Tips and hints [#permalink] New post 27 Aug 2014, 07:15
Tip for questions involving recurring decimals:

Note the following pattern for repeating decimals:
0.22222222... = 2/9
0.54545454... = 54/99
0.298298298... = 298/999

Note the pattern if zeroes preceed the repeating decimal:
0.022222222... = 2/90
0.00054545454... = 54/99000
0.00298298298... = 298/99900
Re: Number Properties: Tips and hints   [#permalink] 27 Aug 2014, 07:15
    Similar topics Author Replies Last post
Similar
Topics:
2 Algebra: Tips and hints Bunuel 1 16 Jul 2014, 10:30
9 Absolute Value: Tips and hints Bunuel 2 09 Jul 2014, 06:04
9 Inequalities: Tips and hints Bunuel 0 02 Jul 2014, 03:33
Remainders: Tips and hints Bunuel 0 23 Jun 2014, 02:33
8 Experts publish their posts in the topic Exponents and Roots on the GMAT: Tips and hints Bunuel 1 24 Jul 2014, 06:33
Display posts from previous: Sort by

Number Properties: Tips and hints

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.