Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
05 Feb 2012, 15:50

5

This post received KUDOS

5

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

39% (02:27) correct
61% (01:16) wrong based on 294 sessions

Of the 60 families in a certain neighborhood, 38 have a cat. How many of the families in this neighborhood have a dog?

(1) 28 of the families in this neighborhood have a cat but not a dog (2) The number of families in the neighborhood who have a dog and a cat is the same as the number of families who have neither a cat nor a dog.

I solved this with a double-matrix method --- because that can get sloppy in the plaintext of these posting windows, I created a pdf attachment.

The double matrix method is a tremendously powerful method for solving these overlapping set problems. At Magoosh, we have a whole series of video lessons going over everything you need to know for GMAT math, including one that explains exactly how to set up the double matrix method of solution.

Please let me know if you should have any questions.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
05 Feb 2012, 20:24

Finally get why it's B. Total residence = 60. Those with no pets = X Those with cats = 38. Those with cats only = 38 -x With cats n dogs = x. Dogs = D. Dogs only = D - x

Total residence with pet = Dogs + Cats only. 60 - x = Cats only (38 - x) + D. The reason for doing this is because total amount of pet owners is people with cats + people with dogs plus people with both. If you add total # of dog owners plus total # of cat owners together your adding owners of both pets twice.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
05 Feb 2012, 22:13

Expert's post

kys123 wrote:

Finally get why it's B. Total residence = 60. Those with no pets = X Those with cats = 38. Those with cats only = 38 -x With cats n dogs = x. Dogs = D. Dogs only = D - x

Total residence with pet = Dogs + Cats only. 60 - x = Cats only (38 - x) + D. The reason for doing this is because total amount of pet owners is people with cats + people with dogs plus people with both. If you add total # of dog owners plus total # of cat owners together your adding owners of both pets twice.

Therefore 60 - X + X -38 = D. D = 22.

B only is significant

It's true that

(# with 1+ pets) = (# with cats only) + (# with dogs only) + (number with both)

Using the notation you adopted,

60 - x = (38 - x) + D + x ---> you forgot that last term.

60 - x + x - 38 - x = D

22 - x = D

And, thus, we cannot establish the value of D with knowing the value of x, so Statement #2, by itself, is insufficient.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
06 Feb 2012, 01:02

1

This post received KUDOS

Okay, but answer still true. D who only only dogs. Individuals who only own dogs plus individual who only own cats = Total individual who own dogs. That's what we're trying to find, so therefore B is correct. 22 = Number in the neighbourhood with a dog (D [# of people who own only dogs] +X [# of people who own dogs and cats].

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
06 Feb 2012, 02:08

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

Good question. +1 to calreg11.

Mike is right that a double-matrix method is probably the easiest way to solve this problem and kys123 is right that the answer to the question is B (+1).

Of the 60 families in a certain neighborhood, 38 have a cat. How many of the families in this neighborhood have a dog?

Consider matrix below. Numbers in black are given and numbers in red are calculated.

Attachment:

Stem.PNG [ 2.53 KiB | Viewed 4202 times ]

(1) 28 of the families in this neighborhood have a cat but not a dog.

Attachment:

Statement 1.PNG [ 2.68 KiB | Viewed 4202 times ]

So you can see that we can no way get # of the families in this neighborhood who has a dog (? in the matrix). Not sufficient.

(2) The number of families in the neighborhood who have a dog and a cat is the same as the number of families who have neither a cat nor a dog.

Attachment:

Statement 2.PNG [ 2.94 KiB | Viewed 4204 times ]

You can see that if # of families who have a dog and a cat and # of families who have neither a cat nor a dog is x, then # of families who has cat but not dog is 38-x. Next, total # of families who has no dog is (38-x)+x=38 and # of families who has a dog is 60-38=22. Sufficient.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
06 Feb 2012, 02:28

This is what I did. The way that Bunuel solve this problem was a lot more elegant, but for me my way is more intuitive. I know everything inside the matrix should add to 60. Hence my solution.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
06 Feb 2012, 08:46

Expert's post

My apologies to kys123

The solution given by Bunuel & kys123 is perfectly correct.

I realize I was misreading/misinterpreting the question, thinking it was asking for the number of people who owned only a dog, i.e. a dog and no cat, not simply the number of dog owners. A good reminder how crucial careful reading is.

If the question were asking for the people who owned only a dog, the answer would be C.

As it stands, though, with the question asking for the number of people who own only a dog, the answer is clearly B, as Bunuel and kys123 have shown.

Again, my apologies for any confusion.

Mike _________________

Mike McGarry Magoosh Test Prep

Last edited by mikemcgarry on 06 Oct 2013, 12:57, edited 1 time in total.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
03 Sep 2012, 05:35

Expert's post

calreg11 wrote:

Of the 60 families in a certain neighborhood, 38 have a cat. How many of the families in this neighborhood have a dog?

(1) 28 of the families in this neighborhood have a cat but not a dog (2) The number of families in the neighborhood who have a dog and a cat is the same as the number of families who have neither a cat nor a dog.

Yes, the question is really good. I like to show a series of diagrams to my students to explain what the statement 'number of families with both = number of families with none' implies. It means the sum of number of families with cat and number of families with dog is constant and is equal to 60. For every one family that has both, there is a family that has none (to keep their numbers equal)

Look at the diagrams below. If the number of families that have neither a dog nor a cat is 0, the number of families with a dog is 60 - 38 = 22. Now what happens when you overlap one family? There is one family which has neither a cat nor a dog. The number of families with a cat or a dog or both reduces by 1 and the number of families with neither increases by 1. The sum is kept constant at 60. The following diagrams should make it clear.

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
04 Oct 2013, 20:09

mikemcgarry wrote:

My apologies to kys123

The solution given by Bunuel[/b ]& [b]kys123 is perfectly correct.

I realize I was misreading/misinterpreting the question, thinking it was asking for the number of people who owned only a dog, i.e. a dog and no cat, not simply the number of dog owners. A good reminder how crucial careful reading is.

If the question were asking for the people who owned only a dog, the answer would be C.

As it stands, though, with the question asking for the number of people who own only a dog, the answer is clearly B, as Bunuel and kys123 have shown.

Again, my apologies for any confusion.

Mike

Its strange that a tutor got it wrong and lot of students have got it right

Re: Of the 60 families in a certain neighborhood, 38 have a cat. [#permalink]
25 Sep 2014, 07:41

Bunuel wrote:

Good question. +1 to calreg11.

Mike is right that a double-matrix method is probably the easiest way to solve this problem and kys123 is right that the answer to the question is B (+1).

Of the 60 families in a certain neighborhood, 38 have a cat. How many of the families in this neighborhood have a dog?

Consider matrix below. Numbers in black are given and numbers in red are calculated.

Attachment:

Stem.PNG

(1) 28 of the families in this neighborhood have a cat but not a dog.

Attachment:

Statement 1.PNG

So you can see that we can no way get # of the families in this neighborhood who has a dog (? in the matrix). Not sufficient.

(2) The number of families in the neighborhood who have a dog and a cat is the same as the number of families who have neither a cat nor a dog.

Attachment:

Statement 2.PNG

You can see that if # of families who have a dog and a cat and # of families who have neither a cat nor a dog is x, then # of families who has cat but not dog is 38-x. Next, total # of families who has no dog is (38-x)+x=38 and # of families who has a dog is 60-38=22. Sufficient.

Answer: B.

Hope it helps.

If we use Venn Diagram it's a lot faster and space saver. Even though, because of timer, I misread question and thought 'the examiner asked about families with just a dog' and marked wrong answer

gmatclubot

Re: Of the 60 families in a certain neighborhood, 38 have a cat.
[#permalink]
25 Sep 2014, 07:41

The Stanford interview is an alumni-run interview. You give Stanford your current address and they reach out to alumni in your area to find one that can interview you...

Originally, I was supposed to have an in-person interview for Yale in New Haven, CT. However, as I mentioned in my last post about how to prepare for b-school interviews...

Interested in applying for an MBA? In the fourth and final part of our live QA series with guest expert Chioma Isiadinso, co-founder of consultancy Expartus and former admissions...