Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 03 Jul 2015, 17:45

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Official Guide 11th. PS #207

Author Message
TAGS:
Intern
Joined: 17 Feb 2009
Posts: 2
Followers: 0

Kudos [?]: 0 [0], given: 0

Official Guide 11th. PS #207 [#permalink]  17 Feb 2009, 18:22
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 0 sessions
207. If n=4p, where p is a prime number greater than 2, how many different positive even divisors does n have, including n?
(A)2
(B)3
(C)4
(D)6
(E)8
SVP
Joined: 07 Nov 2007
Posts: 1824
Location: New York
Followers: 29

Kudos [?]: 564 [0], given: 5

Re: Official Guide 11th. PS #207 [#permalink]  17 Feb 2009, 19:47
emily0506 wrote:
207. If n=4p, where p is a prime number greater than 2, how many different positive even divisors does n have, including n?
(A)2
(B)3
(C)4
(D)6
(E)8

N= 4P = 2*2*P

even divisors : 2,4,2p,4p

C
_________________

Smiling wins more friends than frowning

Manager
Joined: 10 Jan 2009
Posts: 111
Followers: 11

Kudos [?]: 157 [0], given: 0

Re: Official Guide 11th. PS #207 [#permalink]  17 Feb 2009, 22:27
Another approach:

Since we know that p>2, you can simply take any prime value for p and find n. Once you have the value of n, you can find the different positive even divisors.

Ex. For p=3, n = 4*3 = 12

So, the no. of different positive even divisors are four i.e., 2, 4, 6, 12.
_________________

+++ Believe me, it doesn't take much of an effort to underline SC questions. Just try it out. +++
+++ Please tell me why other options are wrong. +++

~~~ The only way to get smarter is to play a smarter opponent. ~~~

GMAT Tutor
Joined: 24 Jun 2008
Posts: 1169
Followers: 302

Kudos [?]: 960 [1] , given: 4

Re: Official Guide 11th. PS #207 [#permalink]  06 Mar 2009, 23:07
1
KUDOS
Expert's post
And in general, if you have a prime factorization:

$$n = 2^x 3^a 5^b$$

-the number of positive divisors of n will be (x+1)*(a+1)*(b+1)
-the number of odd positive divisors of n will be (a+1)*(b+1)
-the number of even positive divisors of n will be x*(a+1)*(b+1)

This will be true no matter what primes you have in your factorization - the odd primes don't need to be 3 and 5 - and regardless of how many primes you have in the prime factorization (I used two odd primes just for illustration).
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Senior Manager
Joined: 30 Nov 2008
Posts: 493
Schools: Fuqua
Followers: 10

Kudos [?]: 167 [0], given: 15

Re: Official Guide 11th. PS #207 [#permalink]  06 Mar 2009, 23:14
Nice tip to remember. Thank you for letting us know.

GMAT is all about solving smart rather than solving hard.
Re: Official Guide 11th. PS #207   [#permalink] 06 Mar 2009, 23:14
Similar topics Replies Last post
Similar
Topics:
#88 11th edition GMAT official review guide 3 25 Jan 2010, 16:06
7 official guide (OG) 11th edition 215 7 16 Apr 2009, 07:35
GMAC 11th Edition Review Guide PS Question 5 08 Mar 2009, 18:57
official guide 11th. PS #201 8 17 Feb 2009, 18:19
Official Guide PS-195 3 17 Mar 2007, 12:56
Display posts from previous: Sort by