Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

On a graph the four corners of a certain quadrilateral [#permalink]
04 Jan 2013, 02:06

1

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

64% (02:26) correct
36% (01:51) wrong based on 70 sessions

On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a < b and both a and b are positive values then what is the area of the quadrilateral?

(1) b + c = 6 (2) The quadrilateral is a rectangle.

Re: On a graph the four corners of a certain quadrilateral [#permalink]
04 Jan 2013, 03:41

2

This post received KUDOS

Expert's post

trex16864 wrote:

On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a < b and both a and b are positive values then what is the area of the quadrilateral?

(1) b + c = 6 (2) The quadrilateral is a rectangle.

There is a problem with this question. We are given that a + c = 12 and (1) says that b + c = 6, thus a = b + 6, which implies that a > b. But the stem says that a < b. I guess it should be a > b instead of a < b.

In this case the question would be: On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a > b and both a and b are positive values then what is the area of the quadrilateral?

Look at the diagram below:

Attachment:

Quadrilateral.PNG [ 9.43 KiB | Viewed 2350 times ]

As we can see given quadrilateral is a rectangle and its area = 5*(a-b).

(1) b + c = 6. Since a + c = 12 and b + c = 6, then a - b = 6. Area = 5*6=30. Sufficient.

(2) The quadrilateral is a rectangle. We already know that. Not sufficient.

Re: On a graph the four corners of a certain quadrilateral [#permalink]
04 Jan 2013, 02:54

My solution:

Given the information in the question we can already conclude, that the quadriliteral is a rectangle with a width of 5. We need to figure out the length of the rectangle in order to find the area.

Re: On a graph the four corners of a certain quadrilateral [#permalink]
01 Jun 2013, 00:16

Bunuel wrote:

trex16864 wrote:

On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a < b and both a and b are positive values then what is the area of the quadrilateral?

(1) b + c = 6 (2) The quadrilateral is a rectangle.

There is a problem with this question. We are given that a + c = 12 and (1) says that b + c = 6, thus a = b + 6, which implies that a > b. But the stem says that a < b. I guess it should be a > b instead of a < b.

In this case the question would be: On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a > b and both a and b are positive values then what is the area of the quadrilateral?

Look at the diagram below:

Attachment:

Quadrilateral.PNG

As we can see given quadrilateral is a rectangle and its area = 5*(a-b).

(1) b + c = 6. Since a + c = 12 and b + c = 6, then a - b = 6. Area = 5*6=30. Sufficient.

(2) The quadrilateral is a rectangle. We already know that. Not sufficient.

Answer: A.

Hope it's clear.

Hi,

Sorry to re-open the thread. But Can you please explain how does the question stem tells us that it is a rectangle?

Re: On a graph the four corners of a certain quadrilateral [#permalink]
01 Jun 2013, 03:17

Expert's post

Genfi wrote:

Bunuel wrote:

trex16864 wrote:

On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a < b and both a and b are positive values then what is the area of the quadrilateral?

(1) b + c = 6 (2) The quadrilateral is a rectangle.

There is a problem with this question. We are given that a + c = 12 and (1) says that b + c = 6, thus a = b + 6, which implies that a > b. But the stem says that a < b. I guess it should be a > b instead of a < b.

In this case the question would be: On a graph the four corners of a certain quadrilateral are (a,5), (b,5), (a,0) and (b,0). If a + c = 12, a > b and both a and b are positive values then what is the area of the quadrilateral?

Look at the diagram below:

Attachment:

Quadrilateral.PNG

As we can see given quadrilateral is a rectangle and its area = 5*(a-b).

(1) b + c = 6. Since a + c = 12 and b + c = 6, then a - b = 6. Area = 5*6=30. Sufficient.

(2) The quadrilateral is a rectangle. We already know that. Not sufficient.

Answer: A.

Hope it's clear.

Hi,

Sorry to re-open the thread. But Can you please explain how does the question stem tells us that it is a rectangle?

Thank you

Mark (a,5), (b,5), (a,0) and (b,0) on the plane and you'll see that you'll get a rectangle for any values of a and b (a>b). _________________

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

I’ll start off with a quote from another blog post I’ve written : “not all great communicators are great leaders, but all great leaders are great communicators.” Being...