Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

On the real number line, there are four points P, Q, S, and [#permalink]

Show Tags

14 Apr 2011, 03:04

00:00

A

B

C

D

E

Difficulty:

(N/A)

Question Stats:

81% (02:10) correct
19% (00:57) wrong based on 118 sessions

HideShow timer Statistics

On the real number line, there are four points P, Q, S, and T, with coordinates p, q, s, and t, respectively. Suppose p < q < s < t, p = -1, s = 2. If the distance between P and Q is twice the distance between Q and S, and S is the midpoint of Q and T, then T has coordinate

On the real number line, there are four points P, Q, S, and T, with coordinates p, q, s, and t, respectively. Suppose p < q < s < t, p = -1, s = 2. If the distance between P and Q is twice the distance between Q and S, and S is the midpoint of Q and T, then T has coordinate

Re: On the real number line, there are four points P, Q, S, and [#permalink]

Show Tags

14 Jul 2016, 10:24

gmatpapa wrote:

On the real number line, there are four points P, Q, S, and T, with coordinates p, q, s, and t, respectively. Suppose p < q < s < t, p = -1, s = 2. If the distance between P and Q is twice the distance between Q and S, and S is the midpoint of Q and T, then T has coordinate

No fancy mathematics is need here just make a big line and divide it into 4 parts (like we do in a number line)

Now since the ascending order is p,q,s,t ; name the parts p,q,s and finally t in the same order p=-1 q= unknown, s=2, t= unknown This is the halfway down the question

Then the question tells us P to Q=2 Q to S It means p=-1 q=1,s=2 {p to q= 1-(-1)=2; and since s we know is 2 then q to us is 2-1 =1} S is the average of q and t \(therefore 2=1+\frac{t}{2}\)

t+1 =4 t=3

Answer is D
_________________

Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly. FINAL GOODBYE :- 17th SEPTEMBER 2016.

On the real number line, there are four points P, Q, S, and [#permalink]

Show Tags

14 Jul 2016, 10:26

gmatpapa wrote:

On the real number line, there are four points P, Q, S, and T, with coordinates p, q, s, and t, respectively. Suppose p < q < s < t, p = -1, s = 2. If the distance between P and Q is twice the distance between Q and S, and S is the midpoint of Q and T, then T has coordinate

No fancy mathematics is need here just make a big line and divide it into 4 parts (like we do in a number line)

Now since the ascending order is p,q,s,t ; name the parts p,q,s and finally t in the same order p=-1 q= unknown, s=2, t= unknown This is the halfway down the question

Then the question tells us distance from (P to Q)=twice the distance from (Q to S) It means p=-1 q=1,s=2 {p to q= 1-(-1)=2; and since s we know is 2 then q to us is 2-1 =1} S is the average of q and t therefore \(S=\frac{q+t}{2}\)

therefore \(2=\frac{1+t}{2}\)

t+1 =4 t=3

Answer is D
_________________

Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly. FINAL GOODBYE :- 17th SEPTEMBER 2016.

gmatclubot

On the real number line, there are four points P, Q, S, and
[#permalink]
14 Jul 2016, 10:26

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...