Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Aug 2014, 20:38

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

overlapping sets

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Manager
Manager
avatar
Joined: 17 Oct 2008
Posts: 198
Followers: 1

Kudos [?]: 13 [1] , given: 11

GMAT Tests User
overlapping sets [#permalink] New post 21 Jul 2010, 01:43
1
This post received
KUDOS
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

100% (01:44) correct 0% (00:00) wrong based on 2 sessions
There are 70 students in Math or English or German. Exactly 40 are in Math,
30 in German, 35 in English and 15 in all three courses. How many students are
enrolled in exactly two of the courses? Math, English and German.

[Reveal] Spoiler:
OA given is 5


please explain your answers.
what is the significance of 'exactly' (Exactly 40 are in Math,
30 in German, 35 in English ) in the stem?
Manager
Manager
avatar
Joined: 20 Jul 2010
Posts: 79
Followers: 5

Kudos [?]: 53 [0], given: 32

Re: overlapping sets [#permalink] New post 21 Jul 2010, 02:45
I am getting answer as:50. Looks to me,exactly is a redundant word.

***
n(MUEUG) = n(M) + n(E) + n(G) - n(M & E) - n(E&G) - n(G&M) +n(M&E&G)

70 = 40 + 35+ 30 - n(M & E) - n(E&G) - n(G&M) + 15
Then, n(M & E) + n(E&G) + n(G&M) = 50.

So students who enrolled in two of the courses are: 50
***
2 KUDOS received
Ms. Big Fat Panda
Ms. Big Fat Panda
User avatar
Status: Biting Nails Into Oblivion
Joined: 09 Jun 2010
Posts: 1855
Followers: 336

Kudos [?]: 1361 [2] , given: 194

GMAT ToolKit User GMAT Tests User
Re: overlapping sets [#permalink] New post 21 Jul 2010, 05:43
2
This post received
KUDOS
I think the OA makes perfect sense. And you cannot just ignore the term exactly. Exactly two means that they are not enrolled in all three classes. The simplest way to extract info from what's given is to draw a Venn Diagram.

Attachment:
File comment: Venn Diagram
c73058.jpg
c73058.jpg [ 19.92 KiB | Viewed 1046 times ]


So, from this picture, we are asked to find out what x+y+z is.

Let's look at given information and form the constraints:

Total = 70

x+y+z+a+b+c+15 = 70

(x+y+z) + (a+b+c) = 55

Total Math = 40

x+y+a+15 = 40

x+y = 25-a

Total German = 30

y+z+c+15 = 30

y+z = 15 -c


Total English = 35

x+z+b+15 = 35

x+z = 20-b

So now combining all the bolded equations regarding totals of each subject we get

2(x+y+z) = 15+25+20 - (a+b+c) = 60 - (a+b+c)

So (a+b+c) = 60 - 2(x+y+z)

Now substituting this into the first equation regarding total students, we get

(x+y+z) + 60 - 2(x+y+z) = 55

Hence x+y+z = 5


nravi4: The mistake you made in getting 50 is this. You counted the students enrolled in two of three subjects, but not strictly so. So your calculation includes the central space of 15 which is students enrolled in all three subjects for each subject you counted. So to get to the answer from your answer you need to do 50 - (3*15) = 5

Hope this is clear.
Manager
Manager
avatar
Joined: 20 Jul 2010
Posts: 79
Followers: 5

Kudos [?]: 53 [0], given: 32

Re: overlapping sets [#permalink] New post 21 Jul 2010, 06:38
Oho...yaaa..i missed the last step of subtracting 15 from M&E, E&G, G&M to match the work "Exactly" ...

Basically, the below is what the question is asking:

n(M & E) - n(M&E&G) + n(E&G) -n(M&E&G) + n(G&M) - n(M&E&G)

Cheers!
Ravi
2 KUDOS received
Manager
Manager
avatar
Joined: 20 Jul 2010
Posts: 198
Followers: 2

Kudos [?]: 54 [2] , given: 7

GMAT Tests User
Re: overlapping sets [#permalink] New post 21 Jul 2010, 07:18
2
This post received
KUDOS
for venn diagrams in case of 3 cases:

Total = m(a) + m(b) + m(c) + m(a&b) + m(b&c) + m(c&a) - 2*m(a&b&c)
So, 70 = 40 + 30 + 35 - m(a&b) - m(b&c) - m(c&a) - 2*15
=> -35 = - [ m(a&b) + m(b&c) + m(c&a) ] - 30
Therefore, m(a&b) + m(b&c) + m(c&a) = 5
_________________

Gotta hit the 700 score this time... 3rd time lucky !
Give me some kudos... Like you, even I need them badly ;)

Manager
Manager
avatar
Joined: 17 Oct 2008
Posts: 198
Followers: 1

Kudos [?]: 13 [0], given: 11

GMAT Tests User
Re: overlapping sets [#permalink] New post 22 Jul 2010, 01:46
whiplash2411 wrote:
I think the OA makes perfect sense. And you cannot just ignore the term exactly. Exactly two means that they are not enrolled in all three classes. The simplest way to extract info from what's given is to draw a Venn Diagram.

Attachment:
c73058.jpg


So, from this picture, we are asked to find out what x+y+z is.

Let's look at given information and form the constraints:

Total = 70

x+y+z+a+b+c+15 = 70

(x+y+z) + (a+b+c) = 55

Total Math = 40

x+y+a+15 = 40

x+y = 25-a

Total German = 30

y+z+c+15 = 30

y+z = 15 -c


Total English = 35

x+z+b+15 = 35

x+z = 20-b

So now combining all the bolded equations regarding totals of each subject we get

2(x+y+z) = 15+25+20 - (a+b+c) = 60 - (a+b+c)

So (a+b+c) = 60 - 2(x+y+z)

Now substituting this into the first equation regarding total students, we get

(x+y+z) + 60 - 2(x+y+z) = 55

Hence x+y+z = 5


nravi4: The mistake you made in getting 50 is this. You counted the students enrolled in two of three subjects, but not strictly so. So your calculation includes the central space of 15 which is students enrolled in all three subjects for each subject you counted. So to get to the answer from your answer you need to do 50 - (3*15) = 5

Hope this is clear.


Hi

cant we take 'a' as 40 here as it is mentioned exactly 40 on math?
Ms. Big Fat Panda
Ms. Big Fat Panda
User avatar
Status: Biting Nails Into Oblivion
Joined: 09 Jun 2010
Posts: 1855
Followers: 336

Kudos [?]: 1361 [0], given: 194

GMAT ToolKit User GMAT Tests User
Re: overlapping sets [#permalink] New post 22 Jul 2010, 05:07
It says that exactly 40 are in math, not that 40 are in ONLY math. The people who take Math and English or Math and German or even all three are also in math, aren't they not? So you can't take a to be 40 since 40 is the sum of a,x, y and 15, i.e. people who take only Math, people who take Math and English, people who take Math and German and people who take all three. Hope this is clear.
Manager
Manager
avatar
Joined: 17 Oct 2008
Posts: 198
Followers: 1

Kudos [?]: 13 [0], given: 11

GMAT Tests User
Re: overlapping sets [#permalink] New post 22 Jul 2010, 07:35
whiplash2411 wrote:
It says that exactly 40 are in math, not that 40 are in ONLY math. The people who take Math and English or Math and German or even all three are also in math, aren't they not? So you can't take a to be 40 since 40 is the sum of a,x, y and 15, i.e. people who take only Math, people who take Math and English, people who take Math and German and people who take all three. Hope this is clear.


Thank you!

got mixed up with 'exactly' and 'only'
Re: overlapping sets   [#permalink] 22 Jul 2010, 07:35
    Similar topics Author Replies Last post
Similar
Topics:
2 Overlapping sets dimri10 6 13 Jun 2011, 03:47
Experts publish their posts in the topic Overlapping Sets Hussain15 7 15 Jul 2010, 23:45
overlapping sets indolent 3 10 Mar 2010, 04:28
overlapping sets thailandvc 7 19 Sep 2009, 21:28
Overlapping Sets MatiasMM 1 11 Sep 2009, 14:25
Display posts from previous: Sort by

overlapping sets

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.