Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Oct 2014, 15:27

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
4 KUDOS received
Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 524 [4] , given: 217

p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 27 Jan 2012, 23:00
4
This post received
KUDOS
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

38% (03:24) correct 63% (01:43) wrong based on 95 sessions
p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.
[Reveal] Spoiler: OA

_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(


Last edited by Bunuel on 28 Jan 2012, 01:34, edited 1 time in total.
OA added
Expert Post
5 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [5] , given: 2849

Re: Distinct Prime Integers [#permalink] New post 28 Jan 2012, 01:31
5
This post received
KUDOS
Expert's post
enigma123 wrote:
p^a q^b r^c s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?
(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.


p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

First of all: a perfect square always has even powers of its prime factors. So, if p, q, r, and s ARE distinct primes, then in order x to be a perfect square a, b, c, and d MUST be even.

(1) 18 is a factor of ab and cd --> we cannot get whether a, b, c, and d are even or odd. For example we can have following two cases:
p^a*q^b*r^c*s^d=2^3*3^6*2^3*3^6: in this case p, q, r, and s are NOT distinct primes.
p^a*q^b*r^c*s^d=2^2*3^{18}*5^2*7^{18}: in this case p, q, r, and s are distinct primes.
Not sufficient.

(2) 4 is not a factor of ab and cd --> which means that at least one from a and b, and at least one from c and d is NOT even (if for example a and b were BOTH even then ab would be a multiple of 4) --> p, q, r, and s are NOT distinct primes. Sufficient.

Answer: B.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 524 [0], given: 217

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 28 Jan 2012, 15:26
Thanks Bunuel - I understand everything apart from this in statement 2:

p,q,r,and s are NOT distinct primes. How???
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [1] , given: 2849

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 28 Jan 2012, 15:33
1
This post received
KUDOS
Expert's post
enigma123 wrote:
Thanks Bunuel - I understand everything apart from this in statement 2:

p,q,r,and s are NOT distinct primes. How???


As discussed: if p, q, r, and s are distinct primes, then a, b, c, and d MUST be even (all of them).

From (2) we get that NOT all from a, b, c, and d are even, hence p, q, r, and s are NOT distinct.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 524 [0], given: 217

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 28 Jan 2012, 15:37
Got it - thanks. Sorry, bit late in the night at my end :-).
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(

Intern
Intern
avatar
Joined: 17 Jan 2012
Posts: 42
GMAT 1: 610 Q43 V31
Followers: 1

Kudos [?]: 34 [0], given: 16

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 29 Jan 2012, 10:26
A silly question! If you loose on such a question, what score one should expect for quant?
(By the way I understood what you explained here, Bunuel, but you would be there on exam day, right!
Expert Post
1 KUDOS received
Founder
Founder
User avatar
Affiliations: UA-1K, SPG-G, HH-D
Joined: 04 Dec 2002
Posts: 12341
Location: United States (WA)
GMAT 1: 750 Q49 V42
GPA: 3.5
WE: Information Technology (Hospitality and Tourism)
Followers: 2323

Kudos [?]: 9421 [1] , given: 3699

GMAT ToolKit User Premium Member CAT Tests
Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 29 Jan 2012, 16:47
1
This post received
KUDOS
Expert's post
docabuzar wrote:
A silly question! If you loose on such a question, what score one should expect for quant?
(By the way I understood what you explained here, Bunuel, but you would be there on exam day, right!


Or this is a silly post that adds no value. On the GMAT, only the experimental ones are silly. This is a pretty tough question. If you think it is an easy one, you should consider providing your own explanation - you will learn quite a bit when you try to teach someone.
_________________

Founder of GMAT Club

Just starting out with GMAT? Start here... | Want to know your GMAT Score? Try GMAT Score Estimator
Need GMAT Book Recommendations? Best GMAT Books

Co-author of the GMAT Club tests

Have a blog? Feature it on GMAT Club!

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 17 Jan 2012
Posts: 42
GMAT 1: 610 Q43 V31
Followers: 1

Kudos [?]: 34 [0], given: 16

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 30 Jan 2012, 02:39
You mis understood my statement. Or may be I wrote it in a wrong way.

What I meant was that I want to ask a silly question, i.e., if someone looses on such a question in GMAT what score he/she should expect. (Acutally I do understand bunuel's explanation to this Q, but I donot think that I will be able to re-produce the concept if this Q appears with some varaition in GMAT)

As far as this question is concerned, for me, it was very tough. I have always appreciated the knowledge bunuel (& for that matter anyone) expresses here in these forum esp the ease with which bunuel explains so many twists in a single question. I m still learning. Cheers!
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [1] , given: 2849

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 30 Jan 2012, 12:31
1
This post received
KUDOS
Expert's post
docabuzar wrote:
You mis understood my statement. Or may be I wrote it in a wrong way.

What I meant was that I want to ask a silly question, ...


Oh, don't worry, no hard feelings whatsoever.

docabuzar wrote:
If someone looses on such a question in GMAT what score he/she should expect. (Acutally I do understand bunuel's explanation to this Q, but I donot think that I will be able to re-produce the concept if this Q appears with some varaition in GMAT)

As far as this question is concerned, for me, it was very tough. I have always appreciated the knowledge bunuel (& for that matter anyone) expresses here in these forum esp the ease with which bunuel explains so many twists in a single question. I m still learning. Cheers!


You are right, it's a quite hard question, probably 700+. So if one answers incorrectly to 1 or 2 of such questions he/she can still expect a pretty decent score.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 17 Jan 2012
Posts: 42
GMAT 1: 610 Q43 V31
Followers: 1

Kudos [?]: 34 [0], given: 16

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 30 Jan 2012, 12:43
Thnx for your reply. I really appreciate.
Director
Director
avatar
Joined: 28 Jul 2011
Posts: 582
Location: United States
Concentration: International Business, General Management
GPA: 3.86
WE: Accounting (Commercial Banking)
Followers: 1

Kudos [?]: 55 [0], given: 16

Re: Distinct Prime Integers [#permalink] New post 12 Mar 2012, 10:31
Bunuel wrote:
enigma123 wrote:
p^a q^b r^c s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?
(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.


p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

First of all: a perfect square always has even powers of its prime factors. So, if p, q, r, and s ARE distinct primes, then in order x to be a perfect square a, b, c, and d MUST be even.

(1) 18 is a factor of ab and cd --> we can not get whether a, b, c, and d are even or odd. For example we can have following two cases:
p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.
p^a*q^b*r^c*s^d=2^2*3^{18}*5^2*7^{18}: in this case p, q, r, and s are distinct primes.
Not sufficient.

(2) 4 is not a factor of ab and cd --> which means that at least one from a and b, and at least one from c and d is NOT even (if for example a and b were BOTH even then ab would be a multiple of 4) --> p, q, r, and s are NOT distinct primes. Sufficient.

Answer: B.

Hope it's clear.


Hi Bunnel


From statement 2 how did you say that P Q R S are distinct primes as we have information only on a,b,c,d???

Thanks in advance
_________________

+1 Kudos If found helpful..

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [2] , given: 2849

Re: Distinct Prime Integers [#permalink] New post 12 Mar 2012, 10:49
2
This post received
KUDOS
Expert's post
kotela wrote:
Bunuel wrote:
enigma123 wrote:
p^a q^b r^c s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?
(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.


p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

First of all: a perfect square always has even powers of its prime factors. So, if p, q, r, and s ARE distinct primes, then in order x to be a perfect square a, b, c, and d MUST be even.

(1) 18 is a factor of ab and cd --> we can not get whether a, b, c, and d are even or odd. For example we can have following two cases:
p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.
p^a*q^b*r^c*s^d=2^2*3^{18}*5^2*7^{18}: in this case p, q, r, and s are distinct primes.
Not sufficient.

(2) 4 is not a factor of ab and cd --> which means that at least one from a and b, and at least one from c and d is NOT even (if for example a and b were BOTH even then ab would be a multiple of 4) --> p, q, r, and s are NOT distinct primes. Sufficient.

Answer: B.

Hope it's clear.


Hi Bunnel


From statement 2 how did you say that P Q R S are distinct primes as we have information only on a,b,c,d???

Thanks in advance


Well, I'm saying exactly the opposite for (2): p, q, r, and s are NOT distinct primes.

As for the connection between a, b, c, d and p, q, r, s: if p, q, r, and s are distinct primes, then a, b, c, and d MUST be even (all of them).

From (2) we get that NOT all from a, b, c, and d are even, hence p, q, r, and s are NOT distinct.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [0], given: 2849

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 27 May 2013, 04:30
Expert's post
1 KUDOS received
Manager
Manager
avatar
Joined: 27 May 2012
Posts: 213
Followers: 0

Kudos [?]: 47 [1] , given: 209

Re: Distinct Prime Integers [#permalink] New post 18 Jul 2013, 05:17
1
This post received
KUDOS
Bunuel wrote:
enigma123 wrote:
p^a q^b r^c s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?
(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.


p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

First of all: a perfect square always has even powers of its prime factors. So, if p, q, r, and s ARE distinct primes, then in order x to be a perfect square a, b, c, and d MUST be even.

(1) 18 is a factor of ab and cd --> we can not get whether a, b, c, and d are even or odd. For example we can have following two cases:
p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.
p^a*q^b*r^c*s^d=2^2*3^{18}*5^2*7^{18}: in this case p, q, r, and s are distinct primes.
Not sufficient.

(2) 4 is not a factor of ab and cd --> which means that at least one from a and b, and at least one from c and d is NOT even (if for example a and b were BOTH even then ab would be a multiple of 4) --> p, q, r, and s are NOT distinct primes. Sufficient.

Answer: B.

Hope it's clear.


I have a doubt regarding this, above we have taken statement 1 has 2 cases
first case : p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.

Now how can we take this case? because it says that x is a perfect square so ultimately total powers of x should be odd, but in this case total powers of x is even , hence x is not a perfect square which contradicts what is given, so shouldn't this case be invalid.
second case for statement 1 of course looks fine.

shouldn't our objective be to find x such that x is a perfect square and p q r s are not distinct and 18 is a factor of ab and cd
if we can find such a case then we will have two cases of perfect square:
one with distinct p q r s and other with non distinct p q r s hence insufficient

but here the first case for statement 1 x is not a perfect square so how can we take this as a valid case ,or am I missing something, can anyone help?

Thanks
_________________

- Stne

1 KUDOS received
Intern
Intern
avatar
Joined: 30 May 2012
Posts: 21
Concentration: Finance, Strategy
GMAT 1: 730 Q49 V41
GPA: 3.39
Followers: 0

Kudos [?]: 5 [1] , given: 0

Re: Distinct Prime Integers [#permalink] New post 18 Jul 2013, 06:30
1
This post received
KUDOS
stne wrote:
Bunuel wrote:
enigma123 wrote:
p^a q^b r^c s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?
(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.


p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

First of all: a perfect square always has even powers of its prime factors. So, if p, q, r, and s ARE distinct primes, then in order x to be a perfect square a, b, c, and d MUST be even.

(1) 18 is a factor of ab and cd --> we can not get whether a, b, c, and d are even or odd. For example we can have following two cases:
p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.
p^a*q^b*r^c*s^d=2^2*3^{18}*5^2*7^{18}: in this case p, q, r, and s are distinct primes.
Not sufficient.

(2) 4 is not a factor of ab and cd --> which means that at least one from a and b, and at least one from c and d is NOT even (if for example a and b were BOTH even then ab would be a multiple of 4) --> p, q, r, and s are NOT distinct primes. Sufficient.

Answer: B.

Hope it's clear.


I have a doubt regarding this, above we have taken statement 1 has 2 cases
first case : p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.

Now how can we take this case? because it says that x is a perfect square so ultimately total powers of x should be odd, but in this case total powers of x is even , hence x is not a perfect square which contradicts what is given, so shouldn't this case be invalid.
second case for statement 1 of course looks fine.

shouldn't our objective be to find x such that x is a perfect square and p q r s are not distinct and 18 is a factor of ab and cd
if we can find such a case then we will have two cases of perfect square:
one with distinct p q r s and other with non distinct p q r s hence insufficient

but here the first case for statement 1 x is not a perfect square so how can we take this as a valid case ,or am I missing something, can anyone help?

Thanks

I think he meant x=2^3*3^6*2^3*3^6.
1 KUDOS received
Manager
Manager
avatar
Joined: 27 May 2012
Posts: 213
Followers: 0

Kudos [?]: 47 [1] , given: 209

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 18 Jul 2013, 06:38
1
This post received
KUDOS
if that's the case then it seems fine. Awesome observer, you really did observe well, +1 to you.
Strangely no one noticed it till now

Keep it up! Thanks
_________________

- Stne

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23381
Followers: 3607

Kudos [?]: 28794 [1] , given: 2849

Re: Distinct Prime Integers [#permalink] New post 18 Jul 2013, 06:57
1
This post received
KUDOS
Expert's post
stne wrote:
Bunuel wrote:
enigma123 wrote:
p^a q^b r^c s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?
(1) 18 is a factor of ab and cd
(2) 4 is not a factor of ab and cd

Any idea how to solve this question please? I don't have an OA unfortunately.


p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r, and s are prime integers, are they distinct?

First of all: a perfect square always has even powers of its prime factors. So, if p, q, r, and s ARE distinct primes, then in order x to be a perfect square a, b, c, and d MUST be even.

(1) 18 is a factor of ab and cd --> we can not get whether a, b, c, and d are even or odd. For example we can have following two cases:
p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.
p^a*q^b*r^c*s^d=2^2*3^{18}*5^2*7^{18}: in this case p, q, r, and s are distinct primes.
Not sufficient.

(2) 4 is not a factor of ab and cd --> which means that at least one from a and b, and at least one from c and d is NOT even (if for example a and b were BOTH even then ab would be a multiple of 4) --> p, q, r, and s are NOT distinct primes. Sufficient.

Answer: B.

Hope it's clear.


I have a doubt regarding this, above we have taken statement 1 has 2 cases
first case : p^a*q^b*r^c*s^d=2^3*2^6*3^3*3^6: in this case p, q, r, and s are NOT distinct primes.

Now how can we take this case? because it says that x is a perfect square so ultimately total powers of x should be odd, but in this case total powers of x is even , hence x is not a perfect square which contradicts what is given, so shouldn't this case be invalid.
second case for statement 1 of course looks fine.

shouldn't our objective be to find x such that x is a perfect square and p q r s are not distinct and 18 is a factor of ab and cd
if we can find such a case then we will have two cases of perfect square:
one with distinct p q r s and other with non distinct p q r s hence insufficient

but here the first case for statement 1 x is not a perfect square so how can we take this as a valid case ,or am I missing something, can anyone help?

Thanks


It was a typo. Edited. Should have been: p^a*q^b*r^c*s^d=2^3*3^6*2^3*3^6. Thank you. +1.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Moderator
Moderator
User avatar
Joined: 10 May 2010
Posts: 818
Followers: 23

Kudos [?]: 324 [0], given: 191

GMAT ToolKit User Premium Member
Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 18 Jul 2013, 07:48
The key to this problem is understanding the fact that for p, q, r, s to be distinct andxto be a perfect square:

a, b , c , d MUST be even

or ab , cdMUST be a multiple of 4.

If ab , cd are NOT necessarily a multiple of 4 then we cannot be sure that p,q,r,s are distinct.
_________________

The question is not can you rise up to iconic! The real question is will you ?

Manager
Manager
avatar
Joined: 25 Oct 2013
Posts: 173
Followers: 0

Kudos [?]: 25 [0], given: 56

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r [#permalink] New post 09 Feb 2014, 05:17
Very good question. Thanks for posting. I chose the wrong answer. BUT If p,q,r & s are distinct primes then a,b,c,d each should be even. if one of them is odd (let's say a) then at least one more of them must also be odd and two of the primes must be equal otherwise the value x cannot be a perfect square. Knowing if one of a,b,c & d is odd answers the question. Hence B. I hope I made sense.
_________________

Click on Kudos if you liked the post!

Practice makes Perfect.

Re: p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r   [#permalink] 09 Feb 2014, 05:17
    Similar topics Author Replies Last post
Similar
Topics:
4 Experts publish their posts in the topic In the figure given below, ABCD is a square, and P, Q, R and b2bt 4 03 Oct 2013, 01:12
Experts publish their posts in the topic p^a q^b r^c s^d= x, where x is a perfect square. If p, q, r, marcodonzelli 6 11 Mar 2008, 11:27
If x is a perfect square and x=p^a*q^b*r^c*s^d , are prime marcodonzelli 3 09 Mar 2008, 08:47
4 Experts publish their posts in the topic p^a * q^b * r^c * s^d = x, where x is a perfect square. If bkk145 8 18 Aug 2007, 08:00
p^a*q^b*r^c*s^d = x, where x is a perfect square. If p, q, sludge 1 24 Jun 2007, 18:25
Display posts from previous: Sort by

p^a*q^b*r^c*s^d=x, where x is a perfect square. If p, q, r

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.