Last visit was: 24 Apr 2024, 16:42 It is currently 24 Apr 2024, 16:42

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
User avatar
Manager
Manager
Joined: 23 Jan 2006
Posts: 91
Own Kudos [?]: 263 [112]
Given Kudos: 0
Send PM
Most Helpful Reply
Math Expert
Joined: 02 Sep 2009
Posts: 92900
Own Kudos [?]: 618811 [32]
Given Kudos: 81588
Send PM
Tutor
Joined: 16 Oct 2010
Posts: 14817
Own Kudos [?]: 64900 [17]
Given Kudos: 426
Location: Pune, India
Send PM
General Discussion
User avatar
Intern
Intern
Joined: 06 Apr 2012
Posts: 27
Own Kudos [?]: 130 [3]
Given Kudos: 48
Send PM
Re: fraction [#permalink]
2
Kudos
1
Bookmarks
Quote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: \((a-b)(a+b)=a^2-b^2\).

Multiple both numerator and denominator by \(\sqrt{n+1}+\sqrt{n}\): \(\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}\).

Answer: E.


Bunuel - just wanted to clarify an aspect of the roots - the final answer of this problem is E and it is perfectly understood. However, if I want to simplify the \(\sqrt{n+1} + \sqrt{n}\) even more... theoretically I could "unroot" these expressions, so that I get \(2n+1\), however, as the answer B is clearly wrong (and I can see why), I want to but I struggle to understand how to "put the roots back" in the \(2n+1\) to get an equivalent of \(\sqrt{n+1} + \sqrt{n}\). Any thoughts on this matter?

Thanks!

Originally posted by kalita on 17 Nov 2012, 05:42.
Last edited by kalita on 18 Nov 2012, 03:47, edited 2 times in total.
Math Expert
Joined: 02 Sep 2009
Posts: 92900
Own Kudos [?]: 618811 [1]
Given Kudos: 81588
Send PM
Re: fraction [#permalink]
1
Kudos
Expert Reply
ikokurin wrote:
Bu nuel wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: \((a-b)(a+b)=a^2-b^2\).

Multiple both numerator and denominator by \(\sqrt{n+1}+\sqrt{n}\): \(\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}\).

Answer: E.


Bunuel - just wanted to clarify an aspect of the roots - the final answer of this problem is E and it is perfectly understood. However, if I want to simplify the SQRT(n+1) + SQRT(n) even more... theoretically I could "unsquare" these expressions, so that I get 2n+1, however, as the answer B is clearly wrong (and I can see why), I struggle to understand how to "square back" the 2n+1 to get an equivalent of SQRT(n+1) + SQRT(n). Can you help me out or share your thoughts on the matter? Thanks!


I don't understand what you mean: how can you get \(2n+1\) from \(\sqrt{n+1}+\sqrt{n}\)?
User avatar
Intern
Intern
Joined: 06 Apr 2012
Posts: 27
Own Kudos [?]: 130 [0]
Given Kudos: 48
Send PM
Re: fraction [#permalink]
Quote:
I don't understand what you mean: how can you get \(2n+1\) from \(\sqrt{n+1}+\sqrt{n}\)?


I meant some people might get \(\sqrt{2n+1}\) which is the answer B. However, I can see why \(\sqrt{n+1}+\sqrt{n}\) is NOT equal \(\sqrt{2n+1}\) even though it might be tempting to simplify it to this form (and pick the wrong answer). But my question is can we simplify \(\sqrt{n+1}+\sqrt{n}\) further by "squaring" both terms and then "unsquaring" them/the expression back somehow... or what could be an equivalent of \(\sqrt{n+1}+\sqrt{n}\)?

Originally posted by kalita on 17 Nov 2012, 06:06.
Last edited by kalita on 18 Nov 2012, 03:39, edited 1 time in total.
Math Expert
Joined: 02 Sep 2009
Posts: 92900
Own Kudos [?]: 618811 [2]
Given Kudos: 81588
Send PM
Re: fraction [#permalink]
2
Kudos
Expert Reply
ikokurin wrote:
I meant some people might get SQRT(2n+1) which is the answer B. However, I can see why SQRT(n+1) + SQRT(n) is NOT equal SQRT(2n+1) even though it might be tempting to simplify it to this form (and pick the wrong answer). But my question is can we simplify SQRT(n+1) + SQRT(n) further by "squaring" both terms and then "squarerooting" them again somehow... or what could be an equivalent of SQRT(n+1) + SQRT(n)?


\(\sqrt{n+1}+\sqrt{n}\) is the simplest form. If you square it you'll get \((\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}\). You cannot take square root from this expression to get anything better than \(\sqrt{n+1}+\sqrt{n}\).

Hope it's clear.
User avatar
Intern
Intern
Joined: 06 Apr 2012
Posts: 27
Own Kudos [?]: 130 [0]
Given Kudos: 48
Send PM
Re: fraction [#permalink]
Quote:
\(\sqrt{n+1}+\sqrt{n}\) is the simplest form. If you square it you'll get \((\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}\). You cannot take square root from this expression to get anything better than \(\sqrt{n+1}+\sqrt{n}\).

Hope it's clear.


I see. What you are saying is clear but your answer does not exactly address what I am after. I can see that \((\sqrt{n+1}+\sqrt{n})^2\) only complicates it further. Sorry to be pertinacious on this - if we do \((\sqrt{n+1})^2+(\sqrt{n})^2\) => we will get \(n+1 + n = 2n + 1\) => can we "undo" the expression \(2n + 1\) somehow to get the equivalent of \(\sqrt{n+1}+\sqrt{n}\)? I promise this is the last one:)

P.S. Also, please let me know if it would be better to send a PM on related "clarifying" questions...

Originally posted by kalita on 17 Nov 2012, 06:37.
Last edited by kalita on 18 Nov 2012, 03:32, edited 1 time in total.
Math Expert
Joined: 02 Sep 2009
Posts: 92900
Own Kudos [?]: 618811 [0]
Given Kudos: 81588
Send PM
Re: fraction [#permalink]
Expert Reply
ikokurin wrote:
\(\sqrt{n+1}+\sqrt{n}\) is the simplest form. If you square it you'll get \((\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}\). You cannot take square root from this expression to get anything better than \(\sqrt{n+1}+\sqrt{n}\).

Hope it's clear.


I see. What you are saying is clear but your answer does not exactly address what I am after. Sorry to be pertinacious on this but I was wondering if we can do (SQRT(n+1))^2 + (SQRT(n))^2 => we will get n+1 + n = 2n + 1 => can we "undo" the expression 2n + 1 somehow to get the equivalent of SQRT(n+1) + SQRT(n)? I promise this is the last one:) Also, please let me know if it would be better to send a PM on related "clarifying" questions...[/quote]

The answer is no, these expressions are not equal.

P.S. Please use formatting, check here: rules-for-posting-please-read-this-before-posting-133935.html#p1096628
User avatar
Intern
Intern
Joined: 06 Apr 2012
Posts: 27
Own Kudos [?]: 130 [0]
Given Kudos: 48
Send PM
Re: fraction [#permalink]
Quote:
The answer is no, these expressions are not equal.

P.S. Please use formatting, check here: rules-for-posting-please-read-this-before-posting-133935.html#p1096628



I understand they are not equal, thanks for help. So I take away there is no way to go from \(2n+1\) (obtained after squaring both terms (\((\sqrt{n+1})^2 + (\sqrt{n})^2\)) into something else that could be an equivalent of\(\sqrt{n+1} + \sqrt{n}\). As mentioned above, for those having issues with exponents/roots, it is possible to make a mistake of simplifying \((\sqrt{n+1})^2 + (\sqrt{n})^2\) into \(\sqrt{2n+1}\) (which is incorrect); nevertheless I wanted to see if there was a way to do something about \(2n+1\) to make it equal to \(\sqrt{n+1} + \sqrt{n}\). For some reason, having inner desire to combine those \(n\) terms to make it all look nicer, it bugs me that leaving the answer as \(\sqrt{n+1} + \sqrt{n}\) is all we can do about this equation; especially after I saw some tricks/solutions relating to the tricky exponent problems and how one can do "wonders" with squaring and unsquaring things :) I was thinking about simplifying this thing into something like, obviously grossly exaggerated, \(^4\sqrt{2n+1}\) or \(\sqrt{2n}+\sqrt{1}\), etc., by "squarerooting" \(2n+1\) back somehow. But again I know the previous examples are plain wrong, just giving an example of what one can go through working through possibilities. Anyhow, enough of this rumble, let me know if you have anything to add...and thanks much for patience.

Regards,
User avatar
Senior Manager
Senior Manager
Joined: 13 Aug 2012
Posts: 336
Own Kudos [?]: 1821 [5]
Given Kudos: 11
Concentration: Marketing, Finance
GPA: 3.23
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
2
Kudos
3
Bookmarks
\(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

\(\frac{1}{\sqrt{n+1}-\sqrt{n}} * \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\)


\(\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}\)

\(\frac{\sqrt{n+1}+\sqrt{n}}{1}\)




Answer: E
User avatar
Intern
Intern
Joined: 03 Jan 2013
Posts: 15
Own Kudos [?]: [0]
Given Kudos: 50
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
I have a quick question on this ..when the initial fraction was rationalized you used:

\(\sqrt{n+1}+ \sqrt{n} / \sqrt{n+1}+ \sqrt{n}\)

did you change the sign from negative to positive since the question stated "n" is a positive number. Wouldn't you have to use the same denominator when Rationalizing a fraction?
User avatar
Intern
Intern
Joined: 03 Jan 2013
Posts: 15
Own Kudos [?]: [0]
Given Kudos: 50
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
Thanks Karishma that cleared things up
User avatar
VP
VP
Joined: 06 Sep 2013
Posts: 1345
Own Kudos [?]: 2391 [0]
Given Kudos: 355
Concentration: Finance
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
kook44 wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)


Isn't it much easier to just pick n=1 and then look for target in answer choices?

Cheers!
J :)
User avatar
Manager
Manager
Joined: 25 Oct 2013
Posts: 115
Own Kudos [?]: 166 [0]
Given Kudos: 55
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
jlgdr wrote:
kook44 wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)


Isn't it much easier to just pick n=1 and then look for target in answer choices?

Cheers!
J :)


What if more than one answer choice gives you same value? first, we have to try original expression with 1 and try each of the choices with 1. If we are lucky we have only one choice matching. but what if there are 2 or even 3 answer choices? we would then have to pick another number. Personally I feel solving it is faster in this case.

Sometimes number picking works faster. knowing when to use number picking is the difficult part.
User avatar
VP
VP
Joined: 06 Sep 2013
Posts: 1345
Own Kudos [?]: 2391 [0]
Given Kudos: 355
Concentration: Finance
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
Ya I guess your right after solving the way Bunuel did it took less than 20 secs

Posted from my mobile device
Tutor
Joined: 16 Oct 2010
Posts: 14817
Own Kudos [?]: 64900 [2]
Given Kudos: 426
Location: Pune, India
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
2
Bookmarks
Expert Reply
jlgdr wrote:
kook44 wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)


Isn't it much easier to just pick n=1 and then look for target in answer choices?

Cheers!
J :)


Yes, absolutely it is. I would answer this question by plugging in the values but you have to be careful of two things. When pluggin in values in the options, two or more options might seem to satisfy. If this happens, you need to plug in a different number in those two to get the actual correct answer.
Also, you need to ensure that the value given by option actually does not match the required value before discarding it.
e.g. here if I put n = 1, \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\) = \(\frac{1}{\sqrt{2}-1}\)

while option (E) gives \(\sqrt{n+1}+\sqrt{n}\) = \(\sqrt{2}+1\)

You cannot discard option (E) because it doesn't look the same. You must rationalize the value obtained from the expression and then compare it with what you get from option (E). So you must be careful.
Intern
Intern
Joined: 22 Jan 2018
Posts: 4
Own Kudos [?]: 0 [0]
Given Kudos: 115
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
Bunuel wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: \((a-b)(a+b)=a^2-b^2\).

Multiple both numerator and denominator by \(\sqrt{n+1}+\sqrt{n}\): \(\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}\).

Answer: E.



Hi! I do not understand, how you came up with the last part of the solution where you just simplify and take the expression from the denominator away.
thank you!
Math Expert
Joined: 02 Sep 2009
Posts: 92900
Own Kudos [?]: 618811 [1]
Given Kudos: 81588
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
1
Kudos
Expert Reply
Jannnn04 wrote:
Bunuel wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: \((a-b)(a+b)=a^2-b^2\).

Multiple both numerator and denominator by \(\sqrt{n+1}+\sqrt{n}\): \(\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}\).

Answer: E.



Hi! I do not understand, how you came up with the last part of the solution where you just simplify and take the expression from the denominator away.
thank you!


The denominator is n+1-n, which is 1:

n + 1 - n= 1.
VP
VP
Joined: 09 Mar 2016
Posts: 1160
Own Kudos [?]: 1017 [0]
Given Kudos: 3851
Send PM
Re: If n is positive, which of the following is equal to [#permalink]
kook44 wrote:
If n is positive, which of the following is equal to \(\frac{1}{\sqrt{n+1}-\sqrt{n}}\)

A. 1

B. \(\sqrt{2n+1}\)

C. \(\frac{\sqrt{n+1}}{\sqrt{n}}\)

D. \(\sqrt{n+1}-\sqrt{n}\)

E. \(\sqrt{n+1}+\sqrt{n}\)



this link is great source about rationalizing denominator :) https://www.wtamu.edu/academic/anns/mps/ ... nalize.htm
GMAT Club Bot
Re: If n is positive, which of the following is equal to [#permalink]
 1   2   
Moderators:
Math Expert
92900 posts
Senior Moderator - Masters Forum
3137 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne