Last visit was: 25 Apr 2024, 12:30 It is currently 25 Apr 2024, 12:30

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Intern
Intern
Joined: 30 Aug 2010
Posts: 10
Own Kudos [?]: 13 [0]
Given Kudos: 0
Send PM
User avatar
Manager
Manager
Joined: 25 Jun 2010
Posts: 57
Own Kudos [?]: 136 [0]
Given Kudos: 0
Send PM
User avatar
SVP
SVP
Joined: 12 Oct 2009
Status:<strong>Nothing comes easy: neither do I want.</strong>
Posts: 2279
Own Kudos [?]: 3594 [0]
Given Kudos: 235
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Send PM
User avatar
Director
Director
Joined: 18 Jul 2010
Status:Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Posts: 538
Own Kudos [?]: 360 [0]
Given Kudos: 15
Concentration: $ Finance $
Schools:Wharton, Sloan, Chicago, Haas
 Q50  V37
GPA: 4.0
WE 1: 8 years in Oil&amp;Gas
Send PM
Re: This problem is not easy [#permalink]
The current mean should do it..

Posted from my mobile device
User avatar
Intern
Intern
Joined: 30 Aug 2010
Posts: 10
Own Kudos [?]: 13 [0]
Given Kudos: 0
Send PM
Re: This problem is not easy [#permalink]
gurpreetsingh,
your answer is approximately correct only for large n. The exact answer is:
\(x_n_+_1=\mu_n\pm\sigma_n\sqrt{\frac{n+1}{n}}\)
The derivation of this formula is not straightforward and took me quite some time. I have the derivation, but unfortunately cannot post my website address yet because I just joined the forum today.
User avatar
Intern
Intern
Joined: 30 Aug 2010
Posts: 10
Own Kudos [?]: 13 [0]
Given Kudos: 0
Send PM
Re: This problem is not easy [#permalink]
mainhoon,
Sorry, no cigar. the mean will not change the mean, but it will change the standard deviation.
User avatar
SVP
SVP
Joined: 12 Oct 2009
Status:<strong>Nothing comes easy: neither do I want.</strong>
Posts: 2279
Own Kudos [?]: 3594 [0]
Given Kudos: 235
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Send PM
Re: This problem is not easy [#permalink]
Let d= standard deviation and a = Mean

\(d = \sqrt{\frac{{(a-x_1)^2 + (a-x_2)^2 + (a-x_2)^2 .....}}{n}}\)

New \(d_n\)= \(\sqrt{\frac{{(a-x_1)^2 + (a-x_2)^2 + (a-x_2)^2 .....(a-x_{n+1})^2}}{{n+1}}}\)

For \(d = d_n\)

\({d_n}^2 = \frac{{(a-x_1)^2 + (a-x_2)^2 + (a-x_2)^2 .....(a-x_{n+1})^2}}{{n+1}}\)

\({d}^2 = \frac{{ d^2 *n+ (a-x_{n+1})^2}}{{n+1}}\)

\({d}^2 * (n+1) = { d^2 *n+ (a-x_{n+1})^2}\)

=> \({d}^2 = {(a-x_{n+1})^2}\)

=> \(|d| = |a-x_{n+1}|\)

Originally posted by gurpreetsingh on 30 Aug 2010, 15:21.
Last edited by gurpreetsingh on 30 Aug 2010, 15:24, edited 1 time in total.
User avatar
Director
Director
Joined: 18 Jul 2010
Status:Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Posts: 538
Own Kudos [?]: 360 [0]
Given Kudos: 15
Concentration: $ Finance $
Schools:Wharton, Sloan, Chicago, Haas
 Q50  V37
GPA: 4.0
WE 1: 8 years in Oil&amp;Gas
Send PM
Re: This problem is not easy [#permalink]
But why is the mean in the n and n+1 case the same? a? that should change...I think the idea is to equate both the standard deviation formula and calculate what the new value should look like.. But I doubt if this is GMAT type...
User avatar
Intern
Intern
Joined: 30 Aug 2010
Posts: 10
Own Kudos [?]: 13 [0]
Given Kudos: 0
Send PM
Re: This problem is not easy [#permalink]
gurpreetsingh,
Your derivation is surprisingly similar to my first attempt, and it happens to be correct as an approximation only for large n. But there is a flaw in this approach, because you are assuming that the mean is the same in both lists, which is not true.

mainhoon,
You are right, the mean will change, and that is the flaw in gurpreetsingh derivation. The derivation of the exact formula is quite involved. Also, I am sure this is not a GMAT question.
User avatar
Intern
Intern
Joined: 30 Aug 2010
Posts: 10
Own Kudos [?]: 13 [0]
Given Kudos: 0
Send PM
Re: This problem is not easy [#permalink]
The Problem:
Find a number, such that when added to a list of numbers will not change the standard deviation of the original list.

The solution:
Define the list of numbers as: \($x_1 ,x_2 , \cdots x_n ,x_{n + 1}$\) where \($x_{n + 1} $\) is the number added to the list.
The mean and the standard deviation of the original list are:
\(\bar x_n = \frac{1}\\
{n}\sum\limits_{i = 1}^n {x_i } \\
\\)
\(\sigma _n ^2 = \frac{1}\\
{{n - 1}}\sum\limits_{i = 1}^n {\left( {x_i - \bar x_n } \right)^2 } \\
\\)
After \($x_{n + 1} $\) is added to the original list, the mean and the standard deviation of the new list are:
\(\bar x_{n + 1} = \frac{1}\\
{{n + 1}}\sum\limits_{i = 1}^{n + 1} {x_i } \\
\\)
\(\sigma _{n + 1} ^2 = \frac{1}\\
{n}\sum\limits_{i = 1}^{n + 1} {\left( {x_i - \bar x_{n + 1} } \right)^2 } \\
\\)

We want to find \($x_{n + 1} $\)

such that \($\sigma _n ^2 = \sigma _{n + 1} ^2 $\)

therefore,
\(\frac{1}\\
{{n - 1}}\sum\limits_{i = 1}^n {\left( {x_i - \bar x_n } \right)^2 } = \frac{1}\\
{n}\sum\limits_{i = 1}^{n + 1} {\left( {x_i - \bar x_{n + 1} } \right)^2 } \\
\\)
The sum of terms up to n is
\(\sum\limits_{i = 1}^n {x_i = n\bar x_n } \\
\\)
and the sum of terms up to n+1 is
\(\sum\limits_{i = 1}^{n + 1} {x_i = (n + 1)\bar x_{n + 1} } \\
\\)
Subtracting \($x_{n + 1}$\)

\(\sum\limits_{i = 1}^{n + 1} {x_i - x_{n + 1} = \sum\limits_{i = 1}^n {x_i } } = n\bar x_n \\
\\)
therefore,

\(\(n + 1)\bar x_{n + 1} - x_{n + 1} = n\bar x_n \\
\\)

\(\bar x_{n + 1} = \frac{n}\\
{{n + 1}}\bar x_n + \frac{{x_{n + 1} }}\\
{{n + 1}}\\
\\) (1)

Some algebra:

\(\sum\limits_{i = 1}^{n + 1} {\left( {x_i - \bar x_{n + 1} } \right)^2 } = \left( {x_{n + 1} - \bar x_{n + 1} } \right)^2 + \sum\limits_{i = 1}^n {\left( {x_i - \bar x_{n + 1} } \right)^2 } \\
\\)
Substituting \(\bar x_{n + 1} \\
\\) with (1)
\(\sum\limits_{i = 1}^{n + 1} {\left( {x_i - \bar x_{n + 1} } \right)^2 } = \left( {x_{n + 1} - \frac{n}\\
{{n + 1}}\bar x_n - \frac{{x_{n + 1} }}\\
{{n + 1}}} \right)^2 + \sum\limits_{i = 1}^n {\left( {x_i - \frac{n}\\
{{n + 1}}\bar x_n - \frac{{x_{n + 1} }}\\
{{n + 1}}} \right)^2 } \\
\\)
Rearranging,
\(\ = \left( {\frac{n}\\
{{n + 1}}x_{n + 1} - \frac{n}\\
{{n + 1}}\bar x_n } \right)^2 + \sum\limits_{i = 1}^n {\left( {x_i - \frac{n}\\
{{n + 1}}\bar x_n - \frac{{x_{n + 1} }}\\
{{n + 1}}} \right)^2 } \\
\\)
\(\ = \left( {\frac{n}\\
{{n + 1}}(x_{n + 1} - \bar x_n )} \right)^2 + \sum\limits_{i = 1}^n {\left( {x_i - \bar x_n + \frac{{\bar x_n }}\\
{{n + 1}} - \frac{{x_{n + 1} }}\\
{{n + 1}}} \right)^2 } \\
\\)
\(\ = \left( {\frac{n}\\
{{n + 1}}} \right)^2 (x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {\left( {x_i - \bar x_n + \frac{1}\\
{{n + 1}}(\bar x_n - x_{n + 1} )} \right)^2 } \\
\\)
Expanding the square in the summation,
\(\ = \left( {\frac{n}\\
{{n + 1}}} \right)^2 (x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {\left( {(x_i - \bar x_n )^2 + \frac{{2(x_i - \bar x_n )}}\\
{{n + 1}}(\bar x_n - x_{n + 1} ) + \frac{1}\\
{{(n + 1)^2 }}(\bar x_n - x_{n + 1} )^2 } \right)} \\
\\)
Note that
\(\\\
(x_{n + 1} - \bar x_n )^2 = (\bar x_n - x_{n + 1} )^2 \\
\\)
Therefore
\(\ = \left( {\frac{n}\\
{{n + 1}}} \right)^2 (x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {\left( {(x_i - \bar x_n )^2 + \frac{{2(x_i - \bar x_n )}}\\
{{n + 1}}(\bar x_n - x_{n + 1} ) + \frac{1}\\
{{(n + 1)^2 }}(x_{n + 1} - \bar x_n )^2 } \right)} \\
\\)
If C is a constant
\(\sum\limits_{i = 1}^n {(f(i) + C) = } \sum\limits_{i = 1}^n {f(i) + nC} \\
\\)
\(\sum\limits_{i = 1}^n {f(i) + Cg(i) = } \sum\limits_{i = 1}^n {f(i) + C\sum\limits_{i = 1}^n {g(i)} } \\
\\)
Therefore
\(\ = \left( {\frac{n}\\
{{n + 1}}} \right)^2 (x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 + \sum\limits_{i + 1}^n {\left( {\frac{{2(x_i - \bar x_n )}}\\
{{n + 1}}(\bar x_n - x_{n + 1} ) + \frac{1}\\
{{(n + 1)^2 }}(x_{n + 1} - \bar x_n )^2 } \right)} } \\
\\)
\(\ = \left( {\frac{n}\\
{{n + 1}}} \right)^2 (x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 + \frac{2}\\
{{n + 1}}(\bar x_n - x_{n + 1} )\sum\limits_{i + 1}^n {(x_i - \bar x_n ) + \frac{n}\\
{{(n + 1)^2 }}(x_{n + 1} - \bar x_n )^2 } } \\
\\)
Observe that
\(\sum\limits_{i = 1}^n {(x_i - \bar x_n )} = \sum\limits_{i = 1}^n {x_i } - n\bar x_n = n\bar x_n - n\bar x_n = 0\\
\\)
Therefore
\(\ = \left( {\frac{n}\\
{{n + 1}}} \right)^2 (x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 + } \frac{n}\\
{{(n + 1)^2 }}(x_{n + 1} - \bar x_n )^2 \\
\\)
\(\ = \frac{n}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 } \\
\\)
From the original problem,
\(\frac{1}\\
{{n - 1}}\sum\limits_{i = 1}^n {\left( {x_i - \bar x_n } \right)^2 } = \frac{1}\\
{n}\sum\limits_{i = 1}^{n + 1} {\left( {x_i - \bar x_{n + 1} } \right)^2 } \\
\\)
Therefore, we need \(x_{n + 1} \\
\\) to satisfy
\(\frac{1}\\
{{n - 1}}\sum\limits_{i = 1}^n {\left( {x_i - \bar x_n } \right)^2 } = \frac{1}\\
{n}\left( {\frac{n}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 + \sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 } } \right) = \frac{1}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 + \frac{1}\\
{n}\sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 } \\
\\)
\(\sigma _n ^2 = \frac{1}\\
{{n - 1}}\sum\limits_{i = 1}^n {\left( {x_i - \bar x_n } \right)^2 } = \frac{1}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 + \frac{1}\\
{n}\sum\limits_{i = 1}^n {(x_i - \bar x_n )^2 } \\
\\)
\(\sigma _n ^2 = \frac{1}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 + \frac{{n - 1}}\\
{n}\sigma _n ^2 \\
\\)
\(\sigma _n ^2 - \frac{{n - 1}}\\
{n}\sigma _n ^2 = \frac{1}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 \\
\\)
\(\frac{1}\\
{n}\sigma _n ^2 = \frac{1}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 \\
\\)
\(\sigma _n ^2 = \frac{n}\\
{{(n + 1)}}(x_{n + 1} - \bar x_n )^2 \\
\\)
\(x_{n + 1} = \bar x_n \pm \sigma _n \sqrt {\frac{{n + 1}}\\
{n}}\\)
For large n
\(x_{n + 1} \approx \bar x_n \pm \sigma _n \\
\\)
For large n, adding an observation one standard deviation on either side of the mean will not change the standard deviation significantly.



Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Problem Solving (PS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
GMAT Club Bot
Re: This problem is not easy [#permalink]
Moderators:
Math Expert
92914 posts
Senior Moderator - Masters Forum
3137 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne