Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

1, ABC is right triangle, Angle C=90, cant figure out the 3 sides ->insuff 2, Ang A=30 degrees, insuff

both 1&2, ABC is right triangle, with 1 angle=30degrees, ABC is half of a equa triangle, then AB=2, AC=2BC... suff \(AC^2+BC^2=AB^2\)=4 -> AC, BC -> area

Question: Is it possible to have a right triangle in a circle without having hypotenuse as the diameter? If no, then stmt 1 should be sufficient as the size and shape of the triangle is always the same !!

Question: Is it possible to have a right triangle in a circle without having hypotenuse as the diameter? If no, then stmt 1 should be sufficient as the size and shape of the triangle is always the same !!

I disagree. The height of such triangle depends on where the 3rd point lies on the circle, and so is its area. Consider following figure:

Attachment:

Triangles.jpg [ 10.69 KiB | Viewed 5469 times ]

AD1<AD2 So Area of Triangle 1 < Area of Triangle 2 So statement 1 is insufficient.

What is the purpose of radius = 1?We haven't used it anywhere in the problem.

That gives us the length of base of triangle. Remember, the diameter forms a right angle triangle in the circle? So diameter = base of the triangle, which will be used to calculate the area of it.

It is nowhere indicated in question that it is a right angle triangle or one of the sides of triangle is diameter.

maratikus wrote:

The answer is B. Why?

State 1: From the first statement we just come to know that line AB = diameter of the circle. But we still don't know anything about line BC. It is not possible to find the length of this line using given information. So insufficient. State 2: We just know that the angle opposite to line BC = 30. But we do not have any additional information to find the length of line BC. So insufficient.

Together we can derive that the \(\angle ACB\) equals 90 degrees, and \(\angle CAB\) equals 30 degrees. So we can derive that \(BC = AB/2\). Answer is C.

Answer could have been B, if the question were like this: A, B, C lie on a circle of radius 1, where points A and B are two ends of the diameter. What is the length of BC?

Please correct me if I am wrong, or missing something. _____________________ Consider KUDOS for good post

You are assuming that this is a right angle triangle. Question does not indicate so. Please recheck.

I'm not making that assumption.

OK, GOT IT!!!! I am such a DUMB person I did not first understand that you are using the sine rule. I am in total agreement now that Statement 2 is sufficient. Thanks a lot for reminding me of that rule. +1 to you maratikus

You are assuming that this is a right angle triangle. Question does not indicate so. Please recheck.

I'm not making that assumption.

Sure, no such assumption was made. But to make clear that the answer to maratikus q is B, no sine theorem is needed:

Assume that O is the center of circle, so if BAC=30 degrees --> BOC=60 degrees, BO=OC=r and triangle BOC is equilateral, BOC=OBC=OCB=60 degrees, BC=r=1
_________________

Points A, B, and C lie on a circle of radius 1. What is the area of triangle ABC?

(1) \(AB^2 = BC^2 + AC^2\) --> triangle ABC is a right triangle with AB as hypotenuse --> \(area=\frac{BC*AC}{2}\). Now, a right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle (the reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle). So, hypotenuse AB=diameter=2*radius=2, but just knowing the length of the hypotenuse is not enough to calculate the legs of a right triangle thus we can not get the area. Not sufficient.

(1)+(2) From (1) ABC is a right triangle and from (2) \(\angle CAB=30\) --> we have 30°-60°-90° right triangle and as AB=hypotenuse=2 then the legs equal to 1 and \(\sqrt{3}\) --> \(area=\frac{BC*AC}{2}=\frac{\sqrt{3}}{2}\). Sufficient.

Re: Points A, B, and C lie on a circle of radius 1. What is the [#permalink]

Show Tags

06 Oct 2014, 04:31

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...