Last visit was: 25 Apr 2024, 02:54 It is currently 25 Apr 2024, 02:54

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
User avatar
Intern
Intern
Joined: 08 Nov 2009
Posts: 2
Own Kudos [?]: 418 [417]
Given Kudos: 0
Send PM
Most Helpful Reply
Math Expert
Joined: 02 Sep 2009
Posts: 92912
Own Kudos [?]: 618892 [453]
Given Kudos: 81595
Send PM
avatar
Manager
Manager
Joined: 30 Aug 2010
Posts: 65
Own Kudos [?]: 511 [151]
Given Kudos: 27
Location: Bangalore, India
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 92912
Own Kudos [?]: 618892 [99]
Given Kudos: 81595
Send PM
Re: Manhattan Remainder Problem [#permalink]
40
Kudos
59
Bookmarks
Expert Reply
bchekuri wrote:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?
(A) 3
(B) 12
(C) 18
(D) 22
(E) 28

How to approach this Problem?


Positive integer n leaves a remainder of 4 after division by 6 --> \(n=6p+4\) --> 4, 10, 16, 22, 28, ...
Positive integer n leaves a remainder of 3 after division by 5 --> \(n=5q+3\) --> 3, 8, 13, 18, 23, 28, ...

\(n=30k+28\) - we have 30 as lcm of 5 and 6 is 30 and we have 28 as the first common integer in the above patterns is 28.

Hence remainder when positive integer n is divided by 30 is 28.

Answer: E.

P.S. n>30 is a redundant information.
User avatar
Manager
Manager
Joined: 12 Jan 2010
Posts: 212
Own Kudos [?]: 162 [47]
Given Kudos: 28
Schools:DukeTuck,Kelogg,Darden
 Q48  V36 GMAT 2: 730  Q50  V38
Send PM
Re: Manhattan Remainder Problem [#permalink]
35
Kudos
12
Bookmarks
bchekuri wrote:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?
(A) 3
(B) 12
(C) 18
(D) 22
(E) 28

How to approach this Problem?


Once we get the concept, We can also use the options to answer faster.

Since the number leaves the remainder 4 after division by 6 we know it is an even number. Only even number that leaves a remainder of 3 after being divisible by 5 has to end with 8.

So narrows the options to 18 and 28.

since 30+18 = 48 is divisible by 6 the answer is 30+28 = 54
Tutor
Joined: 16 Oct 2010
Posts: 14822
Own Kudos [?]: 64907 [29]
Given Kudos: 426
Location: Pune, India
Send PM
Positive integer n leaves a remainder of 4 after division by [#permalink]
8
Kudos
21
Bookmarks
Expert Reply
kuttingchai wrote:

Hello Murali,

Can you please explain how will you solve following example using "NEGATIVE REMAINDER" theory discussed above?
"Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?"


Question: Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?

Solution:
n = 6a + 4 (or remainder = -2)
n = 8b + 2 (or remainder = -6)

The negative remainder is not the same in the two cases. So don't use negative remainders here.

Check out posts on this concept on the blog link given in my signature below.

Originally posted by KarishmaB on 11 Jun 2012, 21:15.
Last edited by KarishmaB on 08 Oct 2022, 22:02, edited 1 time in total.
General Discussion
User avatar
Senior Manager
Senior Manager
Joined: 03 Sep 2006
Posts: 446
Own Kudos [?]: 6776 [16]
Given Kudos: 33
Send PM
Re: Manhattan Remainder Problem [#permalink]
14
Kudos
2
Bookmarks
Possible values of n are:

n = 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, ...

If R = 3 after division of 5, then possible values of n are

n = 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, ...

Therefore according to give conditions, some possible values of n are

n = 28, 58, ...

n > 30

Let's say n = 58

58/30 gives us a remainder of : 28.
User avatar
Manager
Manager
Joined: 28 Jul 2011
Posts: 128
Own Kudos [?]: 418 [1]
Given Kudos: 16
Send PM
Re: Manhattan Remainder Problem [#permalink]
1
Kudos
muralimba wrote:
Friends,

IT IS VERY COMMON IN GMAT to solve this kind of qtns using "NEGATIVE REMAINDER" theory.

The theory says:

if a # x is devided by y and leave the positive # r as the remainder then it can also leave negative # (r-y) as the remainder.

e.g:

9 when devided by 5 leves the remainder 4 : 9=5*1+4
it can also leave the remainder 4-5 = -1 : 9=5*2 -1


back to the original qtn:
n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5
==> n leaves a remainder of -2 (i.e. 4-6) after division by 6 and a remainder of -2 (i.e. 3-5) after division by 5
==> n when devided by 5 and 6 leaves the same remainder -2.
what is n?
LCM (5,6)-2 = 30-2 = 28
CHECK: 28 when devided by 6 leaves the remainder 4 and when devided by 5 leaves the remainder 3

However, the qtn says n > 30

so what is the nex #, > 28, that can give the said remainders when devided by 6 and 5
nothing but 28 + (some multiple of 6 and 5) as this "some multiple of 6 and 5" will not give any remainder when devided by 5 or 6 but 28 will give the required remainders.

hence n could be anything that is in the form 28 + (some multiple of 6 and 5)
observe that "some multiple of 6 and 5" is always a multiple of 30 as LCM (5,6) = 30.

hence when n (i.e. 28 + some multiple of 6 and 5) is devided by 30 gives the remainder 28.

ANSWER "E"

Regards,
Murali.

Kudos?


Hello Murali,

Can you please explain how will you solve following example using "NEGATIVE REMAINDER" theory discussed above?
"Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?"
avatar
Intern
Intern
Joined: 22 Oct 2012
Status:K... M. G...
Posts: 23
Own Kudos [?]: 17 [1]
Given Kudos: 118
Concentration: General Management, Leadership
GMAT Date: 08-27-2013
GPA: 3.8
Send PM
Re: Manhattan Remainder Problem [#permalink]
1
Bookmarks
Bunuel wrote:
To elaborate more.

Suppose we are told that:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?

The statement "positive integer n leaves a remainder of 4 after division by 6" can be expressed as: \(n=6p+4\). Thus according to this particular statement \(n\) could take the following values: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, ...

The statement "positive integer n leaves a remainder of 2 after division by 8" can be expressed as: \(n=8q+2\). Thus according to this particular statement \(n\) could take the following values: 2, 10, 18, 26, 34, 42, 50, 58, 66, ...

The above two statements are both true, which means that the only valid values of \(n\) are the values which are common in both patterns. For example \(n\) can not be 16 (from first pattern) as the second formula does not give us 16 for any value of integer \(q\).

So we should derive general formula (based on both statements) that will give us only valid values of \(n\).

How can these two statement be expressed in one formula of a type \(n=kx+r\)? Where \(x\) is divisor and \(r\) is a remainder.

Divisor \(x\) would be the least common multiple of above two divisors 6 and 8, hence \(x=24\).

Remainder \(r\) would be the first common integer in above two patterns, hence \(r=10\).

Therefore general formula based on both statements is \(n=24k+10\). Thus according to this general formula valid values of \(n\) are: 10, 34, 58, ...

Now, \(n\) divided by 12 will give us the reminder of 10 (as 24k is divisible by 12).

Hope it helps.



Sorry , i didn't understand the last statement written marked in red... instead of 12 if we have other values like 14 or 20 then how remainder would vary.. just lil but curious to understand the gravity
Math Expert
Joined: 02 Sep 2009
Posts: 92912
Own Kudos [?]: 618892 [1]
Given Kudos: 81595
Send PM
Re: Manhattan Remainder Problem [#permalink]
1
Bookmarks
Expert Reply
breakit wrote:
Bunuel wrote:
To elaborate more.

Suppose we are told that:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?

The statement "positive integer n leaves a remainder of 4 after division by 6" can be expressed as: \(n=6p+4\). Thus according to this particular statement \(n\) could take the following values: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, ...

The statement "positive integer n leaves a remainder of 2 after division by 8" can be expressed as: \(n=8q+2\). Thus according to this particular statement \(n\) could take the following values: 2, 10, 18, 26, 34, 42, 50, 58, 66, ...

The above two statements are both true, which means that the only valid values of \(n\) are the values which are common in both patterns. For example \(n\) can not be 16 (from first pattern) as the second formula does not give us 16 for any value of integer \(q\).

So we should derive general formula (based on both statements) that will give us only valid values of \(n\).

How can these two statement be expressed in one formula of a type \(n=kx+r\)? Where \(x\) is divisor and \(r\) is a remainder.

Divisor \(x\) would be the least common multiple of above two divisors 6 and 8, hence \(x=24\).

Remainder \(r\) would be the first common integer in above two patterns, hence \(r=10\).

Therefore general formula based on both statements is \(n=24k+10\). Thus according to this general formula valid values of \(n\) are: 10, 34, 58, ...

Now, \(n\) divided by 12 will give us the reminder of 10 (as 24k is divisible by 12).

Hope it helps.



Sorry , i didn't understand the last statement written marked in red... instead of 12 if we have other values like 14 or 20 then how remainder would vary.. just lil but curious to understand the gravity


\(n=24k+10=12(2k)+10\) --> \(n\) can be: 10, 34, 58, ... \(n\) divided by 12 will give us the reminder of 10.

As, you can see, n divided by 14 can give different remainders. If n=10, then n divided by 14 yields the remainder of 10 but if n=34, then n divided by 14 yields the remainder of 6.
User avatar
Intern
Intern
Joined: 13 May 2013
Posts: 22
Own Kudos [?]: 54 [1]
Given Kudos: 28
Concentration: International Business
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
1
Bookmarks
Maybe I did something wrong, or I just got lucky, so please inform me. I also had 28 as the solution, by just plugging in the values.

a. 3 / 6 = 0 r 6 INCORRECT
b. 12 / 6 = 2 r 0 INCORRECT
c. 18 / 6 = 3 r 0 INCORRECT
d. 22 / 6 = 3 r 4 & 22 / 5 = 4 r 2 INCORRECT
e. 28 / 6 = 4 r 4 & 28 / 5 = 4 r 3 CORRECT

Super-simple math, so there must be something wrong here, haha. :-D
Tutor
Joined: 16 Oct 2010
Posts: 14822
Own Kudos [?]: 64907 [1]
Given Kudos: 426
Location: Pune, India
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
1
Kudos
Expert Reply
Saabs wrote:
Maybe I did something wrong, or I just got lucky, so please inform me. I also had 28 as the solution, by just plugging in the values.

a. 3 / 6 = 0 r 6 INCORRECT
b. 12 / 6 = 2 r 0 INCORRECT
c. 18 / 6 = 3 r 0 INCORRECT
d. 22 / 6 = 3 r 4 & 22 / 5 = 4 r 2 INCORRECT
e. 28 / 6 = 4 r 4 & 28 / 5 = 4 r 3 CORRECT

Super-simple math, so there must be something wrong here, haha. :-D


What you did is correct. The reason you did it will tell you whether you got lucky or used good reasoning.

The question tells you that "n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5"

The options are not the values of n; they are the values of remainder that is leftover after you divide n by 30. You divided the options by 6 and 5 and got the remainder as 4 and 3 respectively. Was that a mistake you made? If yes, then you got lucky.

Though, if you had used logic and said, "Ok, so when n is divided by 30, groups of 30 are made. What is leftover is given in the options. 30 is completely divisible by 6 and by 5 hence the groups of 30 can be evenly divided into groups of 6 as well as groups of 5. So whatever is leftover after division by 30, we need to split that into further groups of 6 and 5. When we split it into groups of 6, we must have remainder as 4 since n leaves remainder 4. When we split it into groups of 5, we must have remainder as 3 since n leaves remainder 3. And, if that is the reason you divided the options by 6 and 5, checked their remainders and got your answer, then well done! You got the logic!"
User avatar
Manager
Manager
Joined: 15 Aug 2013
Posts: 180
Own Kudos [?]: 331 [0]
Given Kudos: 23
Send PM
Re: Manhattan Remainder Problem [#permalink]
Bunuel wrote:
To elaborate more.

Suppose we are told that:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?

The statement "positive integer n leaves a remainder of 4 after division by 6" can be expressed as: \(n=6p+4\). Thus according to this particular statement \(n\) could take the following values: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, ...

The statement "positive integer n leaves a remainder of 2 after division by 8" can be expressed as: \(n=8q+2\). Thus according to this particular statement \(n\) could take the following values: 2, 10, 18, 26, 34, 42, 50, 58, 66, ...

The above two statements are both true, which means that the only valid values of \(n\) are the values which are common in both patterns. For example \(n\) can not be 16 (from first pattern) as the second formula does not give us 16 for any value of integer \(q\).

So we should derive general formula (based on both statements) that will give us only valid values of \(n\).

How can these two statement be expressed in one formula of a type \(n=kx+r\)? Where \(x\) is divisor and \(r\) is a remainder.

Divisor \(x\) would be the least common multiple of above two divisors 6 and 8, hence \(x=24\).

Remainder \(r\) would be the first common integer in above two patterns, hence \(r=10\).

Therefore general formula based on both statements is \(n=24k+10\). Thus according to this general formula valid values of \(n\) are: 10, 34, 58, ...

Now, \(n\) divided by 12 will give us the reminder of 10 (as 24k is divisible by 12).
Hope it helps.


Hi Bunuel,

All of this makes sense but I would like to challenge the last statement highlighted above.

In this case, we can obviously write n=12(2k)+10 as you highlighted in the later posts. If for some reason, let's say it asked for a number that wasn't divisible by 24, wouldn't that make the equation n=24k+10 invalid? Meaning, it asked what is the remainder that n leaves after division by 11?

Additionally, what if it asked "what is the remainder that n leaves after division by 48. Could we still apply the same logic and say 10?

Thanks!
Math Expert
Joined: 02 Sep 2009
Posts: 92912
Own Kudos [?]: 618892 [1]
Given Kudos: 81595
Send PM
Re: Manhattan Remainder Problem [#permalink]
1
Bookmarks
Expert Reply
russ9 wrote:
Bunuel wrote:
To elaborate more.

Suppose we are told that:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?

The statement "positive integer n leaves a remainder of 4 after division by 6" can be expressed as: \(n=6p+4\). Thus according to this particular statement \(n\) could take the following values: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, ...

The statement "positive integer n leaves a remainder of 2 after division by 8" can be expressed as: \(n=8q+2\). Thus according to this particular statement \(n\) could take the following values: 2, 10, 18, 26, 34, 42, 50, 58, 66, ...

The above two statements are both true, which means that the only valid values of \(n\) are the values which are common in both patterns. For example \(n\) can not be 16 (from first pattern) as the second formula does not give us 16 for any value of integer \(q\).

So we should derive general formula (based on both statements) that will give us only valid values of \(n\).

How can these two statement be expressed in one formula of a type \(n=kx+r\)? Where \(x\) is divisor and \(r\) is a remainder.

Divisor \(x\) would be the least common multiple of above two divisors 6 and 8, hence \(x=24\).

Remainder \(r\) would be the first common integer in above two patterns, hence \(r=10\).

Therefore general formula based on both statements is \(n=24k+10\). Thus according to this general formula valid values of \(n\) are: 10, 34, 58, ...

Now, \(n\) divided by 12 will give us the reminder of 10 (as 24k is divisible by 12).
Hope it helps.


Hi Bunuel,

All of this makes sense but I would like to challenge the last statement highlighted above.

In this case, we can obviously write n=12(2k)+10 as you highlighted in the later posts. If for some reason, let's say it asked for a number that wasn't divisible by 24, wouldn't that make the equation n=24k+10 invalid? Meaning, it asked what is the remainder that n leaves after division by 11?

Additionally, what if it asked "what is the remainder that n leaves after division by 48. Could we still apply the same logic and say 10?

Thanks!


If the question were what is the remainder when n is divided by 11, then the answer would be "cannot be determined". The same if the question asked about the remainder when n is divided by 48. See, according to this general formula valid values of \(n\) are: 10, 34, 58, ... These values give different remainders upon division by 11, or 48.
avatar
Manager
Manager
Joined: 07 Dec 2009
Posts: 69
Own Kudos [?]: 102 [0]
Given Kudos: 375
GMAT Date: 12-03-2014
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
Hi,
Probably a silly question....
But can some one explain why Remainder r would be the first common integer in the two patterns
n=6p+4
n=5q+3

Many Thanks
Tutor
Joined: 16 Oct 2010
Posts: 14822
Own Kudos [?]: 64907 [5]
Given Kudos: 426
Location: Pune, India
Send PM
Positive integer n leaves a remainder of 4 after division by [#permalink]
2
Kudos
3
Bookmarks
Expert Reply
bhatiavai wrote:
Hi,
Probably a silly question....
But can some one explain why Remainder r would be the first common integer in the two patterns
n=6p+4
n=5q+3

Many Thanks


N is of the form 6p+4 which means it is one of 4, 10, 16, 22, 28, ...
N is also of the form 5q+3 which means it must also be one of 3, 8, 13, 18, 23, 28, ...

Since N must be a value in both the lists, N can take the values common to both. The first such value is 28.
So N can be 28.

Now what other values can N take? 28 is a number that will leave a remainder of 4 when divided by 6 and a remainder of 3 when divided by 5. The next such number will be (LCM of 6 and 5) + 28. Why? because whatever you add to 28, that should be divisible by 6 as well as 5. Then whatever you add will have no relevance to the remainder and the remainders will remain the same.
That is why some other values of N will be 30+28, 60+28 ...etc.

After you divide any of these numbers by 30, the remainder will be 28.

Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?

Originally posted by KarishmaB on 01 Jun 2014, 20:56.
Last edited by KarishmaB on 17 Oct 2022, 00:46, edited 1 time in total.
avatar
Intern
Intern
Joined: 22 Aug 2014
Posts: 48
Own Kudos [?]: 3 [0]
Given Kudos: 25
GPA: 3.6
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
Bunuel wrote:
bchekuri wrote:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?
(A) 3
(B) 12
(C) 18
(D) 22
(E) 28

How to approach this Problem?


Positive integer n leaves a remainder of 4 after division by 6 --> \(n=6p+4\) --> 4, 10, 16, 22, 28, ...
Positive integer n leaves a remainder of 3 after division by 5 --> \(n=5q+3\) --> 3, 8, 13, 18, 23, 28, ...

\(n=30k+28\) - we have 30 as lcm of 5 and 6 is 30 and we have 28 as the first common integer in the above patterns is 28.

Hence remainder when positive integer n is divided by 30 is 28.

Answer: E.

P.S. n>30 is a redundant information.



What will be the answer of they ask us what the remainder is if n is divided by something other than 30, lets say 11 or 12. any random number which is not a factor of 30.
Math Expert
Joined: 02 Sep 2009
Posts: 92912
Own Kudos [?]: 618892 [0]
Given Kudos: 81595
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
Expert Reply
rohansangari wrote:
Bunuel wrote:
bchekuri wrote:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?
(A) 3
(B) 12
(C) 18
(D) 22
(E) 28

How to approach this Problem?


Positive integer n leaves a remainder of 4 after division by 6 --> \(n=6p+4\) --> 4, 10, 16, 22, 28, ...
Positive integer n leaves a remainder of 3 after division by 5 --> \(n=5q+3\) --> 3, 8, 13, 18, 23, 28, ...

\(n=30k+28\) - we have 30 as lcm of 5 and 6 is 30 and we have 28 as the first common integer in the above patterns is 28.

Hence remainder when positive integer n is divided by 30 is 28.

Answer: E.

P.S. n>30 is a redundant information.



What will be the answer of they ask us what the remainder is if n is divided by something other than 30, lets say 11 or 12. any random number which is not a factor of 30.


In this case we wouldn't be able to determine the remainder. For example, if we were asked to find the remainder of n divided by 11, then we would get different answers: if n = 28, then remainder would be 6 but if n = 58, then the remainder would be 3.
User avatar
Intern
Intern
Joined: 13 Nov 2014
Posts: 8
Own Kudos [?]: 2 [0]
Given Kudos: 133
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
VeritasPrepKarishma wrote:
Saabs wrote:
Maybe I did something wrong, or I just got lucky, so please inform me. I also had 28 as the solution, by just plugging in the values.

a. 3 / 6 = 0 r 6 INCORRECT
b. 12 / 6 = 2 r 0 INCORRECT
c. 18 / 6 = 3 r 0 INCORRECT
d. 22 / 6 = 3 r 4 & 22 / 5 = 4 r 2 INCORRECT
e. 28 / 6 = 4 r 4 & 28 / 5 = 4 r 3 CORRECT

Super-simple math, so there must be something wrong here, haha. :-D


What you did is correct. The reason you did it will tell you whether you got lucky or used good reasoning.

The question tells you that "n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5"

The options are not the values of n; they are the values of remainder that is leftover after you divide n by 30. You divided the options by 6 and 5 and got the remainder as 4 and 3 respectively. Was that a mistake you made? If yes, then you got lucky.

Though, if you had used logic and said, "Ok, so when n is divided by 30, groups of 30 are made. What is leftover is given in the options. 30 is completely divisible by 6 and by 5 hence the groups of 30 can be evenly divided into groups of 6 as well as groups of 5. So whatever is leftover after division by 30, we need to split that into further groups of 6 and 5. When we split it into groups of 6, we must have remainder as 4 since n leaves remainder 4. When we split it into groups of 5, we must have remainder as 3 since n leaves remainder 3. And, if that is the reason you divided the options by 6 and 5, checked their remainders and got your answer, then well done! You got the logic!"


Hi Karishma, could you kindly explain the bold part? I have trouble understanding why it was the case..
Tutor
Joined: 16 Oct 2010
Posts: 14822
Own Kudos [?]: 64907 [1]
Given Kudos: 426
Location: Pune, India
Send PM
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
1
Kudos
Expert Reply
tieurongthieng wrote:
Hi Karishma, could you kindly explain the bold part? I have trouble understanding why it was the case..


You might want to check out this post first on divisibility and remainders:
https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2011/04 ... unraveled/

This tells you why when you divide a number by 30 and get, say 4 as remainder, you will get 4 as remainder when you divide the same number by 6 or 5 or 10 or 15 (factors of 30 greater than 4).

After that, you should check out this post which discusses this particular question in detail:
https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2014/05 ... -the-gmat/

I think these two together will help you get a very clear picture.
GMAT Club Bot
Re: Positive integer n leaves a remainder of 4 after division by [#permalink]
 1   2   
Moderators:
Math Expert
92912 posts
Senior Moderator - Masters Forum
3137 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne