Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

100^20 = 100^19 * 100 i.e 100 times 100^19 = 100^19 + 100^19 + 100^19 + ...... and so on till hundred times --> (1)

now,

105^19 = (100 + 5) ^19 Now, as we know (a + b)^n = a^19 + (nC1)(a^(n-1))(b^1) + (nC2)(a^(n-2))(b^2) + .... + (nCn-1)(a^1)(b^(n-1)) + b^n (100 + 5) ^19 = 100^19 + (19)(100^18)(5^1) + (171)(100^17)(5^2) + .... + 5^19 = 100^19 + (85)(100^18) + ... preceding all the terms will < 100^19 --> (2)

so compare (1) and (2) now, we get

100^20 > 105^19

Hi Goutamread,

Thanks for the response and effort! Although it seems that you have tried to explain in the best possible way that you are aware of, the explanation has just gone over my head _________________

--------------------------------------------------------------- Consider to give me kudos if my post helped you.

I have come across a question that I am not able to either solve it or find a suitable explanation; the question is: -

Q). Which is greater 105^19 or 100^20?

Please help! Thanks in advance.

Could you change the main subject as 'Which is greater 105^19 or 100^20?' So, It may be helpful for others too, in case they need to dive into the problem. _________________

Thanks a lot goutamread! This one is really better. But, I want to know that what made you to split 105 into 100*1.05. This is some thing that is really very important to know because I believe that these are the tactics that one has to think of while attacking a question. _________________

--------------------------------------------------------------- Consider to give me kudos if my post helped you.

I have come across a question that I am not able to either solve it or find a suitable explanation; the question is: -

Q). Which is greater 105^19 or 100^20?

Please help! Thanks in advance.

Could you change the main subject as 'Which is greater 105^19 or 100^20?' So, It may be helpful for others too, in case they need to dive into the problem.

Done! _________________

--------------------------------------------------------------- Consider to give me kudos if my post helped you.

Notice that this expression has 20 terms and none of the terms will be greater than 20^{19}.

Compare (I) with (II). (I) has 100 terms, all of them 20^{19} (II) has 20 terms, all of them equal to or less than 20^{19}.

Hence, (I) will be greater than (II). Or we can say that 100^{20} will be greater than 105^{19}.

Dear Karishma,

Thanks a lot for taking out time to reply to my question! I am still struggling with the fact that this question is from Inequalities and neither you nor goutamread applied any concept of Inequalities or is it that I am not able to identify? _________________

--------------------------------------------------------------- Consider to give me kudos if my post helped you.

Re: Which is greater 105^19 or 100^20? [#permalink]
18 Jan 2013, 07:50

2

This post received KUDOS

ObsessedWithGMAT wrote:

Thanks a lot goutamread! This one is really better. But, I want to know that what made you to split 105 into 100*1.05. This is some thing that is really very important to know because I believe that these are the tactics that one has to think of while attacking a question.

I'm not an expert, rather I'm just another aspirant on the forum. I could try to explain:

See, whenever we deal with a big number/expression, we try to simplify the expression to make it realistic

There could be numerous ways to solve a question, what matters is which one you feel at your ease... now as you mentioned inequality,

assume 105^{19} > 100^{20} lets try to prove whther our assumption is correct or not. If yes, then 105^{19} > 100^{20} and if not then, 105^{19} < 100^{20}

105^{19} > 100^{20} Now, don't these expressions scare us. yes they are scary.. so lets try and simplify. lets divide both side by 100^{20}, (as 100^{20} is +ve --> inequality sign wont change) \frac{105^{19}}{100^{20}} > 1 \frac{105^{19}}{{100^{19}*100}} > 1 (\frac{105}{100})^{19}*\frac{1}{100} > 1 \frac{(1.05) ^{19}}{100} > 1 OR (\frac{26}{25}) ^{19}* \frac{1}{100} > 1 ==> 26 ^{19} > 100 * 25^{19}

From here its already discussed earlier how to solve the problem. Take away could be : There are various ways to solve a problem, what matters is what suits you, but you should be aware of more than one trick. _________________

Thanks and Regards!

P.S. +Kudos Please! in case you like my post.

Last edited by goutamread on 20 Jan 2013, 02:23, edited 1 time in total.