Find all School-related info fast with the new School-Specific MBA Forum

It is currently 30 Aug 2014, 14:19

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

REMAINDERS

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
27 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25207
Followers: 3419

Kudos [?]: 25101 [27] , given: 2702

REMAINDERS [#permalink] New post 24 Dec 2012, 07:48
27
This post received
KUDOS
Expert's post
26
This post was
BOOKMARKED
REMAINDERS

This post is a part of [GMAT MATH BOOK]

created by: Bunuel
edited by: bb, Bunuel

--------------------------------------------------------

Definition

If x and y are positive integers, there exist unique integers q and r, called the quotient and remainder, respectively, such that y =divisor*quotient+remainder= xq + r and 0\leq{r}<x.

For example, when 15 is divided by 6, the quotient is 2 and the remainder is 3 since 15 = 6*2 + 3.

Notice that 0\leq{r}<x means that remainder is a non-negative integer and always less than divisor.

This formula can also be written as \frac{y}{x} = q + \frac{r}{x}.

Properties

  • When y is divided by x the remainder is 0 if y is a multiple of x.
    For example, 12 divided by 3 yields the remainder of 0 since 12 is a multiple of 3 and 12=3*4+0.

  • When a smaller integer is divided by a larger integer, the quotient is 0 and the remainder is the smaller integer.
    For example, 7 divided by 11 has the quotient 0 and the remainder 7 since 7=11*0+7

  • The possible remainders when positive integer y is divided by positive integer x can range from 0 to x-1.
    For example, possible remainders when positive integer y is divided by 5 can range from 0 (when y is a multiple of 5) to 4 (when y is one less than a multiple of 5).

  • If a number is divided by 10, its remainder is the last digit of that number. If it is divided by 100 then the remainder is the last two digits and so on.
    For example, 123 divided by 10 has the remainder 3 and 123 divided by 100 has the remainder of 23.

Example #1 (easy)

If the remainder is 7 when positive integer n is divided by 18, what is the remainder when n is divided by 6?
A. 0
B. 1
C. 2
D. 3
E. 4

When positive integer n is dived by 18 the remainder is 7: n=18q+7.

Now, since the first term (18q) is divisible by 6, then the remainder will only be from the second term, which is 7. 7 divided by 6 yields the remainder of 1.

Answer: B. Discuss this question HERE.

Example #2 (easy)

If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?
A. 0
B. 1
C. 2
D. 3
E. 5

There are several algebraic ways to solve this question, but the easiest way is as follows: since we cannot have two correct answers just pick a prime greater than 3, square it and see what would be the remainder upon division of it by 12.

If n=5, then n^2=25. The remainder upon division 25 by 12 is 1.

Answer: B. Discuss this question HERE.

Example #3 (easy)

What is the tens digit of positive integer x ?
(1) x divided by 100 has a remainder of 30.
(2) x divided by 110 has a remainder of 30.

(1) x divided by 100 has a remainder of 30. We have that x=100q+30: 30, 130, 230, ... as you can see every such number has 3 as the tens digit. Sufficient.

(2) x divided by 110 has a remainder of 30. We have that x=110p+30: 30, 140, 250, 360, ... so, there are more than 1 value of the tens digit possible. Not sufficient.

Answer: A. Discuss this question HERE.

Example #4 (easy)

What is the remainder when the positive integer n is divided by 6?
(1) n is multiple of 5
(2) n is a multiple of 12

(1) n is multiple of 5. If n=5, then n yields the remainder of 5 when divided by 6 but if n=10, then n yields the remainder of 4 when divided by 6. We already have two different answers, which means that this statement is not sufficient.

(2) n is a multiple of 12. Every multiple of 12 is also a multiple of 6, thus n divided by 6 yields the remainder of 0. Sufficient.

Answer: B. Discuss this question HERE.

Example #5 (medium)

If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?
A. 2
B. 4
C. 8
D. 20
E. 45

s divided by t yields the remainder of r can always be expressed as: \frac{s}{t}=q+\frac{r}{t} (which is the same as s=qt+r), where q is the quotient and r is the remainder.

Given that \frac{s}{t}=64.12=64\frac{12}{100}=64\frac{3}{25}=64+\frac{3}{25}, so according to the above \frac{r}{t}=\frac{3}{25}, which means that r must be a multiple of 3. Only option E offers answer which is a multiple of 3

Answer. E. Discuss this question HERE.

Example #6 (medium)

Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?
A. 3
B. 12
C. 18
D. 22
E. 28

Positive integer n leaves a remainder of 4 after division by 6: n=6p+4. Thus n could be: 4, 10, 16, 22, 28, ...
Positive integer n leaves a remainder of 3 after division by 5: n=5q+3. Thus n could be: 3, 8, 13, 18, 23, 28, ...

There is a way to derive general formula for n (of a type n=mx+r, where x is a divisor and r is a remainder) based on above two statements:

Divisor x would be the least common multiple of above two divisors 5 and 6, hence x=30.

Remainder r would be the first common integer in above two patterns, hence r=28.

Therefore general formula based on both statements is n=30m+28. Hence the remainder when positive integer n is divided by 30 is 28.

Answer. E. Discuss this question HERE.

Example #7 (medium)

If x^3 - x = n and x is a positive integer greater than 1, is n divisible by 8?
(1) When 3x is divided by 2, there is a remainder.
(2) x = 4y + 1, where y is an integer.

x^3-x=x(x^2-1)=(x-1)x(x+1), notice that we have the product of three consecutive integers. Now, notice that if x=odd, then x-1 and x+1 are consecutive even integers, thus one of them will also be divisible by 4, which will make (x-1)(x+1) divisible by 2*4=8 (basically if x=odd then (x-1)x(x+1) will be divisible by 8*3=24).

(1) When 3x is divided by 2, there is a remainder. This implies that 3x=odd, which means that x=odd. Therefore (x-1)x(x+1) is divisible by 8. Sufficient.

(2) x = 4y + 1, where y is an integer. We have that x=even+odd=odd, thus (x-1)x(x+1) is divisible by 8. Sufficient.

Answer: D. Discuss this question HERE.

Example #8 (medium)

If x^3 - x = n and x is a positive integer greater than 1, is n divisible by 8?
(1) When 3x is divided by 2, there is a remainder.
(2) x = 4y + 1, where y is an integer.

x^3-x=x(x^2-1)=(x-1)x(x+1), notice that we have the product of three consecutive integers. Now, notice that if x=odd, then x-1 and x+1 are consecutive even integers, thus one of them will also be divisible by 4, which will make (x-1)(x+1) divisible by 2*4=8 (basically if x=odd then (x-1)x(x+1) will be divisible by 8*3=24).

(1) When 3x is divided by 2, there is a remainder. This implies that 3x=odd, which means that x=odd. Therefore (x-1)x(x+1) is divisible by 8. Sufficient.

(2) x = 4y + 1, where y is an integer. We have that x=even+odd=odd, thus (x-1)x(x+1) is divisible by 8. Sufficient.

Answer: D. Discuss this question HERE.

Example #9 (hard)

When 51^25 is divided by 13, the remainder obtained is:
A. 12
B. 10
C. 2
D. 1
E. 0

51^{25}=(52-1)^{25}, now if we expand this expression all terms but the last one will have 52=13*4 in them, thus will leave no remainder upon division by 13, the last term will be (-1)^{25}=-1. Thus the question becomes: what is the remainder upon division -1 by 13? The answer to this question is 12: -1=13*(-1)+12.

Answer: A. Discuss this question HERE.


Example #10 (hard)

When positive integer x is divided by 5, the remainder is 3; and when x is divided by 7, the remainder is 4. When positive integer y is divided by 5, the remainder is 3; and when y is divided by 7, the remainder is 4. If x > y, which of the following must be a factor of x - y?
A. 12
B. 15
C. 20
D. 28
E. 35

When the positive integer x is divided by 5 and 7, the remainder is 3 and 4, respectively: x=5q+3 (x could be 3, 8, 13, 18, 23, ...) and x=7p+4 (x could be 4, 11, 18, 25, ...).

We can derive general formula based on above two statements the same way as for the example above:

Divisor will be the least common multiple of above two divisors 5 and 7, hence 35.

Remainder will be the first common integer in above two patterns, hence 18. So, to satisfy both this conditions x must be of a type x=35m+18 (18, 53, 88, ...);

The same for y (as the same info is given about y): y=35n+18;

x-y=(35m+18)-(35n+18)=35(m-n). Thus x-y must be a multiple of 35.

Answer: E. Discuss this question HERE.

Example #11 (hard)

If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?
(1) When p is divided by 8, the remainder is 5
(2) x – y = 3

(1) When p is divided by 8, the remainder is 5. This implies that p=8q+5=x^2+y^2. Since given that y=odd=2k+1, then 8q+5=x^2+(2k+1)^2 --> x^2=8q+4-4k^2-4k=4(2q+1-k^2-k).

So, x^2=4(2q+1-k^2-k). Now, if k=odd then 2q+1-k^2-k=even+odd-odd-odd=odd and if k=even then 2q+1-k^2-k=even+odd-even-even=odd, so in any case 2q+1-k^2-k=odd --> x^2=4*odd --> in order x to be multiple of 4 x^2 must be multiple of 16 but as we see it's not, so x is not multiple of 4. Sufficient.

(2) x – y = 3 --> x-odd=3 --> x=even but not sufficient to say whether it's multiple of 4.

Answer: A. Discuss this question HERE.

Example #12 (hard)

m and n are positive integers. Is the remainder of \frac{10^m + n}{3} bigger than the remainder of \frac{10^n + m}{3} ?
(1) m \gt n.
(2) The remainder of \frac{n}{3} is 2

First of all any positive integer can yield only three remainders upon division by 3: 0, 1, or 2.

Since, the sum of the digits of 10^m and 10^n is always 1 then the remainders of \frac{10^m + n}{3} and \frac{10^n + m}{3} are only dependent on the value of the number added to 10^m and 10^n. There are 3 cases:
If the number added to them is: 0, 3, 6, 9, ... then the remainder will be 1 (as the sum of the digits of 10^m and 10^n will be 1 more than a multiple of 3);
If the number added to them is: 1, 4, 7, 10, ... then the remainder will be 2 (as the sum of the digits of 10^m and 10^n will be 2 more than a multiple of 3);
If the number added to them is: 2, 5, 8, 11, ... then the remainder will be 0 (as the sum of the digits of 10^m and 10^n will be a multiple of 3).

(1) m \gt n. Not sufficient.

(2) The remainder of \frac{n}{3} is 2 --> n is: 2, 5, 8, 11, ... so we have the third case. Which means that the remainder of \frac{10^m + n}{3} is 0. Now, the question asks whether the remainder of \frac{10^m + n}{3}, which is 0, greater than the reminder of \frac{10^n + m}{3}, which is 0, 1, or 2. Obviously it cannot be greater, it can be less than or equal to. So, the answer to the question is NO. Sufficient.

Answer: B. Discuss this question HERE.
______________________________________________
Check more DS questions on remainders HERE.
Check more PS questions on remainders HERE.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Kaplan Promo CodeKnewton GMAT Discount CodesGMAT Pill GMAT Discount Codes
Expert Post
MBA Section Director
User avatar
Joined: 19 Mar 2012
Posts: 1628
Location: India
GPA: 3.8
WE: Marketing (Energy and Utilities)
Followers: 626

Kudos [?]: 2531 [0], given: 745

Re: REMAINDERS [#permalink] New post 24 Dec 2012, 08:35
Expert's post
Expert Post
BSchool Forum Moderator
avatar
Joined: 27 Aug 2012
Posts: 1104
Followers: 80

Kudos [?]: 492 [0], given: 102

Premium Member CAT Tests
Re: REMAINDERS [#permalink] New post 26 Dec 2012, 00:05
Expert's post
1 KUDOS received
Intern
Intern
avatar
Joined: 17 Jul 2011
Posts: 38
Followers: 0

Kudos [?]: 2 [1] , given: 6

GMAT Tests User
Re: REMAINDERS [#permalink] New post 26 Dec 2012, 23:03
1
This post received
KUDOS
Bunuel wrote:
REMAINDERS

This formula can also be written as \frac{y}{x} = x + \frac{r}{x}



Hi Bunuel

many thanks for this.I may have found a typo.Correct me if i am wrong, the first term to the right of the equality should be q right, instead of x?

Regards,
Anurag
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25207
Followers: 3419

Kudos [?]: 25101 [0], given: 2702

Re: REMAINDERS [#permalink] New post 27 Dec 2012, 01:09
Expert's post
anuragbytes wrote:
Bunuel wrote:
REMAINDERS

This formula can also be written as \frac{y}{x} = x + \frac{r}{x}



Hi Bunuel

many thanks for this.I may have found a typo.Correct me if i am wrong, the first term to the right of the equality should be q right, instead of x?

Regards,
Anurag


Edited the typo. Thank you. +1.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2225
Followers: 185

Kudos [?]: 36 [0], given: 0

Premium Member
Re: REMAINDERS [#permalink] New post 28 Dec 2013, 17:03
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25207
Followers: 3419

Kudos [?]: 25101 [0], given: 2702

Re: REMAINDERS [#permalink] New post 28 May 2014, 03:23
Expert's post
Intern
Intern
avatar
Joined: 10 Mar 2013
Posts: 11
Followers: 0

Kudos [?]: 0 [0], given: 16

Premium Member
Re: REMAINDERS [#permalink] New post 18 Jun 2014, 14:54
I have reviewed this theory but am still having a hard time understanding a couple of things. I will be using the following 2 examples:

Example #1 & 6.

From Example 1: "Now, since the first term (18q) is divisible by 6, then the remainder will only be from the second term, which is 7. 7 divided by 6 yields the remainder of 1." I don't understand why it matters if 18q is divisible by 6 or not and how do you determine if the remainder comes from the second term or not.

From Example 2: Why are we trying to derive an LCM of 5 & 6?

Greatly appreciate the assistance.
Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 25207
Followers: 3419

Kudos [?]: 25101 [2] , given: 2702

Re: REMAINDERS [#permalink] New post 21 Jun 2014, 06:33
2
This post received
KUDOS
Expert's post
farhanabad wrote:
I have reviewed this theory but am still having a hard time understanding a couple of things. I will be using the following 2 examples:

Example #1 & 6.

From Example 1: "Now, since the first term (18q) is divisible by 6, then the remainder will only be from the second term, which is 7. 7 divided by 6 yields the remainder of 1." I don't understand why it matters if 18q is divisible by 6 or not and how do you determine if the remainder comes from the second term or not.

From Example 2: Why are we trying to derive an LCM of 5 & 6?

Greatly appreciate the assistance.


18q can be divided equally into 6 groups, so it will leave the remainder of 0. So, the remainder when 18q+1 is divided by 6 will come only from the second term, which is 1.

For example:
18 + 1 = 19 divided by 6 gives the remainder of 1;
18*2 + 1 = 37 divided by 6 gives the remainder of 1;
18*3 + 1 = 55 divided by 6 gives the remainder of 1;
...

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Manager
Manager
avatar
Joined: 22 Jul 2014
Posts: 75
Followers: 0

Kudos [?]: 33 [1] , given: 84

REMAINDERS [#permalink] New post 15 Aug 2014, 22:26
1
This post received
KUDOS
Amazing stuff/.


Just a suggestion. If there was an attachment for remainders, where all questions are collected in a document 'level-wise' and chapter-wise, it would be amazing. In fact it would also help referring that document to check on the errors
Just a suggestion though.
:-D
_________________

If you found this post useful for your prep, click 'Kudos'

2 KUDOS received
Intern
Intern
avatar
Joined: 27 Aug 2014
Posts: 28
GMAT Date: 09-27-2014
Followers: 1

Kudos [?]: 0 [2] , given: 25

CAT Tests
Re: REMAINDERS [#permalink] New post 27 Aug 2014, 04:52
2
This post received
KUDOS
2
This post was
BOOKMARKED
I would like to add the following shortcuts:

1)
Remainder of (ax + 1)^n / a = 1

Example: 46^3578 / 9 will have a remainder of 1.

2)
Similarly, remainder of (ax - 1)^n / a = 1 (if n is even) or -1 (if n is odd)

Example: 27^79 / 14 will have a remainder of -1 or 13.
Intern
Intern
avatar
Joined: 27 Aug 2014
Posts: 28
GMAT Date: 09-27-2014
Followers: 1

Kudos [?]: 0 [0], given: 25

CAT Tests
Re: REMAINDERS [#permalink] New post 27 Aug 2014, 08:48
1
This post was
BOOKMARKED
Another tip which may be handy.

(Fermat's theorem)

If ‘p’ is a prime number and ‘a’ and ‘p’ are co-primes:

1)
Remainder of (a^p)/p = a
(a^p – a) will be divisible by p.

Example: remainder of (10^13)/13 = 13

2)
Remainder of [a^(p-1)]/p = 1

Example: remainder of (10^12)/13 = 1
Re: REMAINDERS   [#permalink] 27 Aug 2014, 08:48
    Similar topics Author Replies Last post
Similar
Topics:
remainder Nihit 22 23 Jul 2008, 04:34
Remainders ventivish 4 15 May 2008, 17:16
3 When x is divided by 5, the remainder is 2. Is x divisible marcodonzelli 2 27 Jan 2008, 10:32
Remainder ps_dahiya 4 05 Jul 2006, 10:38
Remainder getzgetzu 8 24 Nov 2005, 01:20
Display posts from previous: Sort by

REMAINDERS

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.