Find all School-related info fast with the new School-Specific MBA Forum

It is currently 17 Sep 2014, 09:46

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

right Triangle Theorem

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 107
Followers: 1

Kudos [?]: 10 [0], given: 28

right Triangle Theorem [#permalink] New post 15 Jul 2012, 18:30
I want to understand right triangles a little better.

So if you have a Triangle and the given facts are:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10

Can we conclude the triangle is a 6-8-10 ( a variant of the 3-4-5) triangle? If not, can we calculate the permiter of the triangle?



How about the introduction of a new fact:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10
3) All the sides of the triangle are integer values.

Now can we concludes it is a 6-8-10 triangle?

With the exception of having a 90* degree angle, what conditions do we need to ensure a triangle is a Pythagorean triangle?
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4766
Location: Pune, India
Followers: 1112

Kudos [?]: 5041 [0], given: 164

Re: right Triangle Theorem [#permalink] New post 15 Jul 2012, 22:24
Expert's post
alphabeta1234 wrote:
I want to understand right triangles a little better.

So if you have a Triangle and the given facts are:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10

Can we conclude the triangle is a 6-8-10 ( a variant of the 3-4-5) triangle? If not, can we calculate the permiter of the triangle?



How about the introduction of a new fact:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10
3) All the sides of the triangle are integer values.

Now can we concludes it is a 6-8-10 triangle?

With the exception of having a 90* degree angle, what conditions do we need to ensure a triangle is a Pythagorean triangle?


There are various ways in which you can have a right triangle with hypotenuse 10.
The sides could be 1, \sqrt{99}, 10
or \sqrt{2}, \sqrt{98}, 10
or 6, 8, 10
etc

If sides are integral, it does add constraint to the values that the sides can take. Pythagorean triplets give sides of right triangles that have all integral sides. But that doesn't ensure that the hypotenuse will imply a single value for the other two sides in all cases (but it does in most).
If hypotenuse is 10, the sides will be 6 and 8 but if the hypotenuse is 65, the other two sides could be (16, 63) or (33, 56)

Check out more here: http://en.wikipedia.org/wiki/Pythagorean_triple
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 107
Followers: 1

Kudos [?]: 10 [0], given: 28

Re: right Triangle Theorem [#permalink] New post 16 Jul 2012, 15:45
Hey Karishma,

What about

How about the introduction of a new fact:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10
3) All the sides of the triangle are integer values.

Does the third condition gaurentee that we have a unique triplet triangle? Because as you mentioned we can have a right triangle with hypotunse of 10 with three possible side orders:

1) 1, \sqrt{99}, 10
2) \sqrt{2}, \sqrt{98}, 10
3) 6,8,10


But notice only one of choices has all of its sides as integer values!! (1) and (2) do not have integer values as sides.

Can I therefore state the condition :

IF the triangle is:
1) A right triangle
2) One of the sides is triplet value (3,4,5) (6,8,10) (5,12,13) (8,15,17) etc
3) All of the sides are integer value

Then the triangle is a triplet and unique?
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4766
Location: Pune, India
Followers: 1112

Kudos [?]: 5041 [0], given: 164

Re: right Triangle Theorem [#permalink] New post 16 Jul 2012, 22:30
Expert's post
alphabeta1234 wrote:
Hey Karishma,

What about

How about the introduction of a new fact:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10
3) All the sides of the triangle are integer values.

Does the third condition gaurentee that we have a unique triplet triangle? Because as you mentioned we can have a right triangle with hypotunse of 10 with three possible side orders: (actually, there are innumerable ways in which you can have the hypotenuse 10. I just gave 3 examples. But yes, only one of them has all integral sides)

1) 1, \sqrt{99}, 10
2) \sqrt{2}, \sqrt{98}, 10
3) 6,8,10


But notice only one of choices has all of its sides as integer values!! (1) and (2) do not have integer values as sides.

Can I therefore state the condition :

IF the triangle is:
1) A right triangle
2) One of the sides is triplet value (3,4,5) (6,8,10) (5,12,13) (8,15,17) etc
3) All of the sides are integer value

Then the triangle is a triplet and unique?


Read the above post again: "If sides are integral, it does add constraint to the values that the sides can take. Pythagorean triplets give sides of right triangles that have all integral sides. But that doesn't ensure that the hypotenuse will imply a single value for the other two sides in all cases (but it does in most).
If hypotenuse is 10, the sides will be 6 and 8 but if the hypotenuse is 65, the other two sides could be (16, 63) or (33, 56)
"

Let me re-phrase it:

If hypotenuse is 10, the sides must be 6, 8, 10 - unique
If hypotenuse is 65, the sides are not unique. There are two pythagorean triplets with hypotenuse 65. They are (16, 63, 65) and (33, 56, 65).

Often, with a given hypotenuse, only one pythagorean triplet is formed, but it is not necessary.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 22 Jun 2012
Posts: 53
GMAT 1: 730 Q49 V40
Followers: 2

Kudos [?]: 15 [0], given: 6

Re: right Triangle Theorem [#permalink] New post 17 Jul 2012, 18:08
VeritasPrepKarishma wrote:

There are various ways in which you can have a right triangle with hypotenuse 10.
The sides could be 1, \sqrt{99}, 10
or \sqrt{2}, \sqrt{98}, 10
or 6, 8, 10
etc

More than various, there is actually an infinite amount of right triangles with hypotenuse = 10!!
BSchool Thread Master
User avatar
Status: If you think you can, then eventually you WILL!
Joined: 05 Apr 2011
Posts: 430
Location: India
Concentration: Finance, Marketing
Schools: XLRI (A)
GMAT 1: 570 Q49 V19
GMAT 2: 700 Q51 V31
GPA: 3
WE: Information Technology (Computer Software)
Followers: 58

Kudos [?]: 240 [0], given: 44

GMAT Tests User Premium Member
Re: right Triangle Theorem [#permalink] New post 19 Jul 2012, 01:11
Given facts are:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10

Q. Can we conclude the triangle is a 6-8-10 ( a variant of the 3-4-5) triangle?
A. No you CANNOT conclude that its a 6-8-10 triangle as you have only the following things known:--
Suppose base is b
height is d
and hypotenous is h
then what you know is h=10
and
a^2 + b^2 = h^2 = 10^2
So there can be any number of values for a and b!
So you CANNOT conclude that it is a 6-8-10 traingel


Q. If not, can we calculate the permiter of the triangle?
A. NO you cannot find the perimeter of teh trainagle as you don't know the individual sides of the traingle/(as explained above)



How about the introduction of a new fact:

1) Right triangle (so one side is 90*)
2) The hypotunse is equal to 10
3) All the sides of the triangle are integer values.

Q. Now can we concludes it is a 6-8-10 triangle?
A.
Suppose base is b
height is d
and hypotenous is h
then what you know is h=10
and
a^2 + b^2 = h^2 = 10^2
Since a and b can only be positive integers so,
a can be 6 or 8 and b can be 8 0r 6 respectively.
YES you can conclude that it is a 6-8-10 triangle


Q. With the exception of having a 90* degree angle, what conditions do we need to ensure a triangle is a Pythagorean triangle?
A. Pythagorean Triangle. I doubt if there is a term like that! But i know what you mean. You mean what all do we need to apply Pythagorean Theorm.
Pythagorean Theorm is defined only for right angled triangles.
Any triangle which is a right angled triangle => You can use Pythagorean Theorm.
Any triangle which is NOT a right andled triangle => You CANNOT use Pythagorean Theorm.

Hope it helps!
_________________

ankit
you must believe

How to start GMAT preparations?
How to Improve Quant Score?
gmatclub topic tags
Check out my GMAT debrief
Thursdays with Ron link
Looking for a Quant tutor? Check out my post for the same!

Combined Formula Sheet :
Number Properties || Word Problems and PnC || Equations, Inequalities || Geometry

How to Solve :
Statistics || Reflection of a line || Remainder Problems

Re: right Triangle Theorem   [#permalink] 19 Jul 2012, 01:11
    Similar topics Author Replies Last post
Similar
Topics:
5 Experts publish their posts in the topic If ABD is a triangle, is triangle ABC a right triangle joylive 18 07 Dec 2012, 08:24
Experts publish their posts in the topic Right triangles edwyn 1 09 Nov 2009, 13:24
Right triangle vannu 2 14 Jul 2009, 13:18
Right Triangle yogachgolf 1 15 Nov 2007, 12:28
Right Angled Triangle vprabhala 1 25 Dec 2004, 20:49
Display posts from previous: Sort by

right Triangle Theorem

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.