Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Running at their respective constant rate, machine X takes 2 [#permalink]
13 Aug 2013, 05:13

1

This post received KUDOS

heyholetsgo wrote:

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets.

A. 4 B. 6 C. 8 D. 10 E. 12

my style of solution ,which is pretty common:

Attachments

work widgets.png [ 30.15 KiB | Viewed 1271 times ]

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets. A. 4 B. 6 C. 8 D. 10 E. 12

For work problems one of the most important thin to know is \(rate*time=job \ done\).

Let the time needed for machine X to produce \(w\) widgets be \(t\) days, so the rate of X would be \(rate=\frac{job \ done}{time}=\frac{w}{t}\);

As "machine X takes 2 days longer to produce \(w\) widgets than machines Y" then time needed for machine Y to produce \(w\) widgets would be \(t-2\) days, so the rate of Y would be \(rate=\frac{job \ done}{time}=\frac{w}{t-2}\);

Combined rate of machines X and Y in 1 day would be \(\frac{w}{t}+\frac{w}{t-2}\) (remember we can sum the rates). In 3 days two machines together produce 5w/4 widgets so: \(3(\frac{w}{t}+\frac{w}{t-2})=\frac{5w}{4}\) --> \(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\).

\(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\) --> reduce by \(w\) --> \(\frac{1}{t}+\frac{1}{t-2}=\frac{5}{12}\).

At this point we can either solve quadratic equation: \(5t^2-34t+24=0\) --> \((t-6)(5t-4)=0\) --> \(t=6\) or \(t=\frac{4}{5}\) (which is not a valid solution as in this case \(t-2=-\frac{6}{5}\), the time needed for machine Y to ptoduce \(w\) widgets will be negatrive value and it's not possible). So \(t=6\) days is needed for machine X to produce \(w\) widgets, hence time needed for machine X to produce \(2w\) widgets will be \(2t=12\) days.

OR try to substitute the values from the answer choices. Remember as we are asked to find the time needed for machine X alone to produce \(2w\) widgets then the answer should be \(2t\) among answer choices: E work - \(2t=12\) --> \(t=6\) --> \(\frac{1}{6}+\frac{1}{6-2}=\frac{5}{12}\).

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets. A. 4 B. 6 C. 8 D. 10 E. 12

For work problems one of the most important thin to know is \(rate*time=job \ done\).

Let the time needed for machine X to produce \(w\) widgets be \(t\) days, so the rate of X would be \(rate=\frac{job \ done}{time}=\frac{w}{t}\);

As "machine X takes 2 days longer to produce \(w\) widgets than machines Y" then time needed for machine Y to produce \(w\) widgets would be \(t-2\) days, so the rate of Y would be \(rate=\frac{job \ done}{time}=\frac{w}{t-2}\);

Combined rate of machines X and Y in 1 day would be \(\frac{w}{t}+\frac{w}{t-2}\) (remember we can sum the rates). In 3 days two machines together produce 5w/4 widgets so: \(3(\frac{w}{t}+\frac{w}{t-2})=\frac{5w}{4}\) --> \(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\).

\(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\) --> reduce by \(w\) --> \(\frac{1}{t}+\frac{1}{t-2}=\frac{5}{12}\).

At this point we can either solve quadratic equation: \(5t^2-34t+24=0\) --> \((t-6)(5t-4)=0\) --> \(t=6\) or \(t=\frac{4}{5}\) (which is not a valid solution as in this case \(t-2=-\frac{6}{5}\), the time needed for machine Y to ptoduce \(w\) widgets will be negatrive value and it's not possible). So \(t=6\) days is needed for machine X to produce \(w\) widgets, hence time needed for machine X to produce \(2w\) widgets will be \(2t=12\) days.

OR try to substitute the values from the answer choices. Remember as we are asked to find the time needed for machine X alone to produce \(2w\) widgets then the answer should be \(2t\) among answer choices: E work - \(2t=12\) --> \(t=6\) --> \(\frac{1}{6}+\frac{1}{6-2}=\frac{5}{12}\).

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets. A. 4 B. 6 C. 8 D. 10 E. 12

For work problems one of the most important thin to know is \(rate*time=job \ done\).

Let the time needed for machine X to produce \(w\) widgets be \(t\) days, so the rate of X would be \(rate=\frac{job \ done}{time}=\frac{w}{t}\);

As "machine X takes 2 days longer to produce \(w\) widgets than machines Y" then time needed for machine Y to produce \(w\) widgets would be \(t-2\) days, so the rate of Y would be \(rate=\frac{job \ done}{time}=\frac{w}{t-2}\);

Combined rate of machines X and Y in 1 day would be \(\frac{w}{t}+\frac{w}{t-2}\) (remember we can sum the rates). In 3 days two machines together produce 5w/4 widgets so: \(3(\frac{w}{t}+\frac{w}{t-2})=\frac{5w}{4}\) --> \(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\).

\(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\) --> reduce by \(w\) --> \(\frac{1}{t}+\frac{1}{t-2}=\frac{5}{12}\).

At this point we can either solve quadratic equation: \(5t^2-34t+24=0\) --> \((t-6)(5t-4)=0\) --> \(t=6\) or \(t=\frac{4}{5}\) (which is not a valid solution as in this case \(t-2=-\frac{6}{5}\), the time needed for machine Y to ptoduce \(w\) widgets will be negatrive value and it's not possible). So \(t=6\) days is needed for machine X to produce \(w\) widgets, hence time needed for machine X to produce \(2w\) widgets will be \(2t=12\) days.

OR try to substitute the values from the answer choices. Remember as we are asked to find the time needed for machine X alone to produce \(2w\) widgets then the answer should be \(2t\) among answer choices: E work - \(2t=12\) --> \(t=6\) --> \(\frac{1}{6}+\frac{1}{6-2}=\frac{5}{12}\).

For the above question, I defined the time for X to produce w widgets to be 'x+2', and subsequently set the time for Y to produce w widgets to 'x', instead of setting time for X to complete to be 'x' and then set Y time to complete to be 'x-2'. However, when I proceed to solve the equation which is set up so that w/t+2 + w/t = 5/12w, my answer becomes t= -6/5 or 4, which is different to the actual answer.

What I dont understand is why can't I set time for x to be 'x+2'and why do I have to set x to be 'x'and then Y to be 'x-2'? Just trying to understand the logic of setting up the equation as you mentioned.

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets. A. 4 B. 6 C. 8 D. 10 E. 12

For work problems one of the most important thin to know is \(rate*time=job \ done\).

Let the time needed for machine X to produce \(w\) widgets be \(t\) days, so the rate of X would be \(rate=\frac{job \ done}{time}=\frac{w}{t}\);

As "machine X takes 2 days longer to produce \(w\) widgets than machines Y" then time needed for machine Y to produce \(w\) widgets would be \(t-2\) days, so the rate of Y would be \(rate=\frac{job \ done}{time}=\frac{w}{t-2}\);

Combined rate of machines X and Y in 1 day would be \(\frac{w}{t}+\frac{w}{t-2}\) (remember we can sum the rates). In 3 days two machines together produce 5w/4 widgets so: \(3(\frac{w}{t}+\frac{w}{t-2})=\frac{5w}{4}\) --> \(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\).

\(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\) --> reduce by \(w\) --> \(\frac{1}{t}+\frac{1}{t-2}=\frac{5}{12}\).

At this point we can either solve quadratic equation: \(5t^2-34t+24=0\) --> \((t-6)(5t-4)=0\) --> \(t=6\) or \(t=\frac{4}{5}\) (which is not a valid solution as in this case \(t-2=-\frac{6}{5}\), the time needed for machine Y to ptoduce \(w\) widgets will be negatrive value and it's not possible). So \(t=6\) days is needed for machine X to produce \(w\) widgets, hence time needed for machine X to produce \(2w\) widgets will be \(2t=12\) days.

OR try to substitute the values from the answer choices. Remember as we are asked to find the time needed for machine X alone to produce \(2w\) widgets then the answer should be \(2t\) among answer choices: E work - \(2t=12\) --> \(t=6\) --> \(\frac{1}{6}+\frac{1}{6-2}=\frac{5}{12}\).

For the above question, I defined the time for X to produce w widgets to be 'x+2', and subsequently set the time for Y to produce w widgets to 'x', instead of setting time for X to complete to be 'x' and then set Y time to complete to be 'x-2'. However, when I proceed to solve the equation which is set up so that w/t+2 + w/t = 5/12w, my answer becomes t= -6/5 or 4, which is different to the actual answer.

What I dont understand is why can't I set time for x to be 'x+2'and why do I have to set x to be 'x'and then Y to be 'x-2'? Just trying to understand the logic of setting up the equation as you mentioned.

You can do this way too. 4 hours is the time for Y to produce w widgets, thus the time for X to produce w widgets is t+2=6 hours and to produce 2w widgets is 12 hours.

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets. A. 4 B. 6 C. 8 D. 10 E. 12

For work problems one of the most important thin to know is \(rate*time=job \ done\).

Let the time needed for machine X to produce \(w\) widgets be \(t\) days, so the rate of X would be \(rate=\frac{job \ done}{time}=\frac{w}{t}\);

As "machine X takes 2 days longer to produce \(w\) widgets than machines Y" then time needed for machine Y to produce \(w\) widgets would be \(t-2\) days, so the rate of Y would be \(rate=\frac{job \ done}{time}=\frac{w}{t-2}\);

Combined rate of machines X and Y in 1 day would be \(\frac{w}{t}+\frac{w}{t-2}\) (remember we can sum the rates). In 3 days two machines together produce 5w/4 widgets so: \(3(\frac{w}{t}+\frac{w}{t-2})=\frac{5w}{4}\) --> \(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\).

\(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\) --> reduce by \(w\) --> \(\frac{1}{t}+\frac{1}{t-2}=\frac{5}{12}\).

At this point we can either solve quadratic equation: \(5t^2-34t+24=0\) --> \((t-6)(5t-4)=0\) --> \(t=6\) or \(t=\frac{4}{5}\) (which is not a valid solution as in this case \(t-2=-\frac{6}{5}\), the time needed for machine Y to ptoduce \(w\) widgets will be negatrive value and it's not possible). So \(t=6\) days is needed for machine X to produce \(w\) widgets, hence time needed for machine X to produce \(2w\) widgets will be \(2t=12\) days.

OR try to substitute the values from the answer choices. Remember as we are asked to find the time needed for machine X alone to produce \(2w\) widgets then the answer should be \(2t\) among answer choices: E work - \(2t=12\) --> \(t=6\) --> \(\frac{1}{6}+\frac{1}{6-2}=\frac{5}{12}\).

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets. A. 4 B. 6 C. 8 D. 10 E. 12

For work problems one of the most important thin to know is \(rate*time=job \ done\).

Let the time needed for machine X to produce \(w\) widgets be \(t\) days, so the rate of X would be \(rate=\frac{job \ done}{time}=\frac{w}{t}\);

As "machine X takes 2 days longer to produce \(w\) widgets than machines Y" then time needed for machine Y to produce \(w\) widgets would be \(t-2\) days, so the rate of Y would be \(rate=\frac{job \ done}{time}=\frac{w}{t-2}\);

Combined rate of machines X and Y in 1 day would be \(\frac{w}{t}+\frac{w}{t-2}\) (remember we can sum the rates). In 3 days two machines together produce 5w/4 widgets so: \(3(\frac{w}{t}+\frac{w}{t-2})=\frac{5w}{4}\) --> \(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\).

\(\frac{w}{t}+\frac{w}{t-2}=\frac{5w}{12}\) --> reduce by \(w\) --> \(\frac{1}{t}+\frac{1}{t-2}=\frac{5}{12}\).

At this point we can either solve quadratic equation: \(5t^2-34t+24=0\) --> \((t-6)(5t-4)=0\) --> \(t=6\) or \(t=\frac{4}{5}\) (which is not a valid solution as in this case \(t-2=-\frac{6}{5}\), the time needed for machine Y to ptoduce \(w\) widgets will be negatrive value and it's not possible). So \(t=6\) days is needed for machine X to produce \(w\) widgets, hence time needed for machine X to produce \(2w\) widgets will be \(2t=12\) days.

OR try to substitute the values from the answer choices. Remember as we are asked to find the time needed for machine X alone to produce \(2w\) widgets then the answer should be \(2t\) among answer choices: E work - \(2t=12\) --> \(t=6\) --> \(\frac{1}{6}+\frac{1}{6-2}=\frac{5}{12}\).

Re: Running at their respective constant rates, machine X takes [#permalink]
17 Nov 2013, 10:12

I am trying to solve it using the following formula:

Days per widget x # of widgets = Total number of days

I get an incorrect answer and despite multiple reviews cannot understand where the mistake is.

Machine Y produced w widgets in x days so x/w widgets a day. Machine X produced w widgets in x+2 days so x+2/w widgets a day. Together the machines produced 12/5w a day (3 divided by 5w/4). Therefore:

x/w+(x+2)/w=12/5w -> (x+2+x)/w=12/5w -> simplifying for w -> (x+2+x)/1=12/5 5(2x+2)=12 10x+10=12 10x=2 X=1/5 X+2=11/5

2(x+2)=Days required to produce 2w=22/5

Can somebody please help me understand the mistake in my calculation?!

Re: Running at their respective constant rate, machine X takes 2 [#permalink]
20 Nov 2013, 12:29

Bunuel wrote:

farhanc85 wrote:

Whats wrong with the below mentioned approach. I know its wrong but cant get my head whats wrong. X number of days taken by x Y number of days taken by Y.

1/x - 1/y = 1/2 1/x + 1/y = 5/12

I got the right ones explained earlier just want to know whats wrong with this one.

Given: running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y.

Now, if x and y are the number of days for machines X and Y to produce w widgets, respectively, then it should be x-y=2.

I had an idea here, maybe you could tell me if this makes sense:

Running at their respective constant rate, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets.

So we know that two machines combine to produce 5w/4 widgets in 3 days, so per day they're producing 5/12 of the job combined, now we know that the rates are going to be 1/t and 1/t-2...so couldn't we skip the early steps and jump right to the 1/t+1/(t-2)=5/12? It would cut out about 30 seconds of setup and work if that could apply to other problems, yes?

Re: Running at their respective constant rates, machine X takes [#permalink]
04 Apr 2015, 14:46

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Running at their respective constant rates, machine X takes [#permalink]
05 Apr 2015, 03:30

heyholetsgo wrote:

Running at their respective constant rates, machine X takes 2 days longer to produce w widgets than machines Y. AT these rates, if the two machines together produce 5w/4 widgets in 3 days, how many days would it take machine X alone to produce 2w widgets.

A. 4 B. 6 C. 8 D. 10 E. 12

Solved it by options and worked backwards.

it is given that if y takes k days to produce w widgets then x would take k-2 days.

in the answer choices we are given x's time to produce 2w widgets. half the answer choice(s) and that number would give the number of days x takes to produce w widgets. and that number minus 2 would give number of days taken by y to produce w widgets. after that work out the number of widgets they together can produce in 3 days....the answer choice which gives 5w/4 is correct.

E does that. if x takes 12 days for 2w widgets. then x would take 6 days for w widgets (and in 3 days it will produce w/2 widgets)

y will take 4 days for w widgets (and in 3 days it will produce 3w/4 widgets)

x and y together will produce w/2 + 3w/4 = 5w/4 widgets in 3 days.

QED :p _________________

Illegitimi non carborundum.

gmatclubot

Re: Running at their respective constant rates, machine X takes
[#permalink]
05 Apr 2015, 03:30

Originally posted on MIT Sloan School of Management : We are busy putting the final touches on our application. We plan to have it go live by July 15...