Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Seven family members are seated around their circular dinner [#permalink]

Show Tags

04 Oct 2010, 06:30

2

This post received KUDOS

1

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

35% (medium)

Question Stats:

58% (01:37) correct
42% (00:55) wrong based on 302 sessions

HideShow timer Statistics

Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120 B. 240 C. 360 D. 480 E. 720

Are you sure you got the right OA on this one ?

As I see it : 7 members, and Michael & Bobby sit together. So treat those two like a single person. Now you have to arrange 6 people around a table. This may be done in 5! or 120 ways

The number of ways to arrange Michael & Bobby is 2 (MB or BM).

So net there are 240 ways or B

I don't think this is a GMAT level question, may be a tad too hard _________________

Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120 B. 240 C. 360 D. 480 E. 720

Glue Michael and Bobby so that they create one unit, so we would have total of 6 units: {1}{2}{3}{4}{5}{MB} --> # of different arrangements of \(n\) objects around the table (circular arrangements) is is \((n-1)!\), so our 6 objects can be arranged in \((6-1)!=5!\).

On the other hand Michael and Bobby in 2! ways --> total \(5!*2!=240\).

Re: Seven family members are seated around their circular dinner [#permalink]

Show Tags

21 Sep 2013, 13:27

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Seven family members are seated around their circular dinner [#permalink]

Show Tags

02 Mar 2015, 10:17

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Seven family members are seated around their circular dinner [#permalink]

Show Tags

29 Jun 2016, 00:42

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Seven family members are seated around their circular dinner [#permalink]

Show Tags

29 Jun 2016, 02:25

Expert's post

eladshush wrote:

Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120 B. 240 C. 360 D. 480 E. 720

Lets consider Michael and Bobby as one individual and fix their position so that all the members do NOT move together while they remain in same order relatively

Now after fixing Michael and Bobby we have 5 other member left to change their positions among themselves which can change positions in 5! ways

but Michael and Bobby and exchange positions between the two in 2! ways'

Hence, Total ways of different arrangements = 5!*2! = 120*2 = 240

READ:http://gmatclub.com/forum/620-to-760-getting-reborn-161230.html Classroom Centre Address: GMATinsight 107, 1st Floor, Krishna Mall, Sector-12 (Main market), Dwarka, New Delhi-110075 ______________________________________________________ Please press the if you appreciate this post !!

gmatclubot

Re: Seven family members are seated around their circular dinner
[#permalink]
29 Jun 2016, 02:25

Part 2 of the GMAT: How I tackled the GMAT and improved a disappointing score Apologies for the month gap. I went on vacation and had to finish up a...

Cal Newport is a computer science professor at GeorgeTown University, author, blogger and is obsessed with productivity. He writes on this topic in his popular Study Hacks blog. I was...

So the last couple of weeks have seen a flurry of discussion in our MBA class Whatsapp group around Brexit, the referendum and currency exchange. Most of us believed...