Find all School-related info fast with the new School-Specific MBA Forum

It is currently 31 Oct 2014, 19:25

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 08 Sep 2008
Posts: 1
Location: NYC
Followers: 0

Kudos [?]: 0 [0], given: 0

Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked [#permalink] New post 04 Dec 2008, 12:31
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

68% (01:57) correct 32% (01:04) wrong based on 247 sessions
Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked at random from the set of all integers between 10 and 110, inclusive. If each of these integers is divided by 7 and the 7 remainders are all added together, what would be the sum of the 7 remainders?

(1) The range of the remainders is 6.
(2) The seven integers are consecutive.
[Reveal] Spoiler: OA
Current Student
avatar
Joined: 28 Dec 2004
Posts: 3403
Location: New York City
Schools: Wharton'11 HBS'12
Followers: 13

Kudos [?]: 167 [0], given: 2

Re: Remainders Question from MGMAT [#permalink] New post 04 Dec 2008, 12:46
its a good question, I would go with B..

1) range tells me that maybe i got 34/7 etc...maybe the rest all multiples of 7 who knows..

2) tells us we got consecutive us , we got a series that repeats itself every 7 numbers..so thats suff
Senior Manager
Senior Manager
avatar
Joined: 30 Nov 2008
Posts: 493
Schools: Fuqua
Followers: 10

Kudos [?]: 132 [0], given: 15

Re: Remainders Question from MGMAT [#permalink] New post 05 Dec 2008, 09:46
My answer will be B. Here is the explanation.

Clue 1 - Range is the difference between the largest and the smallest numbers. Possible remainders when a number is divided by 7 is 0 thru 6. SO range is 6. This can be derived from the question itself. So Clue 1 is the same derivation made is explicit. With this we cannot say what numebers are choosen and what would be ther remainders and in turn the sum. S0 Clue 1 is INSUFFICIENT.

Clue 2 - It says that the numbers are consecutive. This clearly tells that one number is divisible by 7. So remainder is 0. And the rest of the 6 numbers should leave the remainders from 1 thru 6. From this we can get the sum of the remainders. So Clue 2 is sufficient.

Any OA?
1 KUDOS received
SVP
SVP
User avatar
Joined: 07 Nov 2007
Posts: 1829
Location: New York
Followers: 27

Kudos [?]: 472 [1] , given: 5

Re: Remainders Question from MGMAT [#permalink] New post 24 Jan 2009, 15:16
1
This post received
KUDOS
bindrakaran001 wrote:
y nt D.

if the range is 6.
then the nos must be consecutive..

7 - 1 = 6
27 - 21 = 6,etc

now v knw range , v knw nos r consecutive...


Range will give you difference between highest and lowest numbers

for e.g.

0,1,2,3,4,5,6 -- range (6-0)=6
0,0,0,0,0,0,6 -- range (6-0)=6
0,6,6,6,6,6,6 -- range (6-0)=6

multiple solutions : satement1 is not suffcieint


B is suffcieint.
_________________

Your attitude determines your altitude
Smiling wins more friends than frowning

Manager
Manager
avatar
Joined: 04 Jan 2009
Posts: 243
Followers: 1

Kudos [?]: 9 [0], given: 0

Re: Remainders Question from MGMAT [#permalink] New post 24 Jan 2009, 16:07
Mspixel wrote:
Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked at random from the set of all integers between 10 and 110, inclusive. If each of these integers is divided by 7 and the 7 remainders are all added together, what would be the sum of the 7 remainders?

(1) The range of the remainders is 6.

(2) The seven integers are consecutive.

I'm not sure where to begin with this question.

first step:
xi = 7*ki+ri where i=1 to 7.
sum of ri=?
(1) max-min (r1,....,r6)=6
(2) xi is such that x(i+1) = xi+1
So,
x1 = 7k1+r1
x2 = x1+1=7k1+r1+1
x3 = x2+1 = 7k1+r1+2
x7 = 7k1+r1+6.
sum of remainders = 7r1+1+2+3+4+5+6 = 7r1+21
one remainder is zero. so r1 can be solved for. hence B.
_________________

-----------------------
tusharvk

Current Student
User avatar
Joined: 23 Oct 2010
Posts: 384
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Followers: 13

Kudos [?]: 146 [0], given: 73

GMAT ToolKit User
Re: Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked [#permalink] New post 31 Mar 2013, 01:15
I didnt get why (1) is wrong.
I think all 7 integers are different. that is why if the range is 6, then there are consecutive integers that match the criteria. how is it possible to have the following, if 7 integers are different and the range of the set is 6? could you please write down any set that match this criteria?

0,1,2,3,4,5,6 -- range (6-0)=6
0,0,0,0,0,0,6 -- range (6-0)=6
0,6,6,6,6,6,6 -- range (6-0)=6
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23519
Followers: 3637

Kudos [?]: 29434 [2] , given: 2934

Re: Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked [#permalink] New post 31 Mar 2013, 07:14
2
This post received
KUDOS
Expert's post
LalaB wrote:
I didnt get why (1) is wrong.
I think all 7 integers are different. that is why if the range is 6, then there are consecutive integers that match the criteria. how is it possible to have the following, if 7 integers are different and the range of the set is 6? could you please write down any set that match this criteria?

0,1,2,3,4,5,6 -- range (6-0)=6
0,0,0,0,0,0,6 -- range (6-0)=6
0,6,6,6,6,6,6 -- range (6-0)=6


For example, {14, 21, 28, 35, 42, 49, 55} --> remainders {0, 0, 0, 0, 0, 0, 6} --> range 6 --> the sum of the remainders 6.

Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked at random from the set of all integers between 10 and 110, inclusive. If each of these integers is divided by 7 and the 7 remainders are all added together, what would be the sum of the 7 remainders?

The trick here is to know that remainder is always non-negative integer less than divisor 0\leq{r}<d, so in our case 0\leq{r}<7.

So, the remainder upon division of any integer by 7 could be: 0, 1, 2, 3, 4, 5, or 6 (7 values).

(1) The range of the remainders is 6 --> if we pick 6 different multiples of 7 (all remainders 0) and the 7th number is 20 (remainder 6) then the range would be 6 and the sum also 6. But if we pick 7 consecutive integers then we'll have all possible remainders: 0, 1, 2, 3, 4, 5, and 6 and their sum will be 21. Not sufficient.

(2) The seven integers are consecutive. ANY 7 consecutive integers will give us all remainders possible: 0, 1, 2, 3, 4, 5, and 6. It does not matter what the starting integer will be: if it's say 11 then the remainder of 7 consecutive integers from 11 divided by 7 will be: 4, 5, 6, 0, 1, 2, and 3 and if starting number is say 14 then the remainder of 7 consecutive integers from 14 divided by 7 will be: 0, 1, 2, 3, 4, 5 and 6. So in any case sum=0+1+2+3+4+5+6=21. Sufficient.

Answer: B.

Similar questions to practice:
seven-different-numbers-are-selected-from-the-integers-1-to-99943.html
n-consecutive-integers-are-selected-from-the-integers-131349.html

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23519
Followers: 3637

Kudos [?]: 29434 [0], given: 2934

Re: Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked [#permalink] New post 06 Jun 2013, 05:10
Expert's post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on remainders problems: remainders-144665.html

All DS remainders problems to practice: search.php?search_id=tag&tag_id=198
All PS remainders problems to practice: search.php?search_id=tag&tag_id=199

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Manager
Manager
avatar
Joined: 28 Feb 2012
Posts: 115
Concentration: Strategy, International Business
Schools: INSEAD Jan '13
GPA: 3.9
WE: Marketing (Other)
Followers: 0

Kudos [?]: 21 [1] , given: 17

GMAT ToolKit User
Re: Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked [#permalink] New post 07 Jun 2013, 00:07
1
This post received
KUDOS
Mspixel wrote:
Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked at random from the set of all integers between 10 and 110, inclusive. If each of these integers is divided by 7 and the 7 remainders are all added together, what would be the sum of the 7 remainders?

(1) The range of the remainders is 6.
(2) The seven integers are consecutive.



(1) seven numbers could be all different and the remainders also could be different. For example, if we have 13, 14, 21, 28, 35, 42, 56 the range of the remainders is 6 (6, 0, 0, 0, 0, 0, 0) the sum is also 6. However if we have 10, 11, 12, 13, 14, 15, 16 the range is still 6 but the sum is greater. The statement is not sufficient.

(2) if we have 10, 11, 12, 13, 14, 15, 16 the remainders will be 3, 4, 5, 6, 0, 1, 2 it is easy to see that there is a pattern of remainders, since the numbers are consecutive their remainders will always have a pattern from 0 to 6. Sufficient, thus the answer is B.
_________________

If you found my post useful and/or interesting - you are welcome to give kudos!

CEO
CEO
User avatar
Joined: 09 Sep 2013
Posts: 2948
Followers: 212

Kudos [?]: 44 [0], given: 0

Premium Member
Re: Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked [#permalink] New post 30 Sep 2014, 20:15
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked   [#permalink] 30 Sep 2014, 20:15
    Similar topics Author Replies Last post
Similar
Topics:
4 Experts publish their posts in the topic If x = -1, then -(x^4 + x^3 + x^2 + x) = Bunuel 7 03 Feb 2014, 00:23
3 Experts publish their posts in the topic Is (x - 4)(x - 3)(x + 2)(x + 1) > 0 HKHR 3 27 Sep 2013, 07:01
Experts publish their posts in the topic If x = -1, then (x^4 - x^3 + x^2)/(x - 1) = Walkabout 2 19 Dec 2012, 05:17
If x=-1, then -(x^7+x^6+x^3+x^2+x)=??? A. -18 B. -3 C. X & Y 2 17 Jun 2006, 18:41
If x=7, what is the value of 1-x^2+x^3-x^4+x^5-x^6 joemama142000 10 28 Apr 2006, 02:08
Display posts from previous: Sort by

Seven integers, x1, x2, x3, x4, x5, x6, and x7, are picked

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.