Find all School-related info fast with the new School-Specific MBA Forum

It is currently 16 Sep 2014, 17:32

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Solving Inequalities

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
8 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 28 Mar 2012
Posts: 285
Concentration: Entrepreneurship
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
Followers: 16

Kudos [?]: 157 [8] , given: 23

GMAT ToolKit User GMAT Tests User
Solving Inequalities [#permalink] New post 19 Jun 2012, 02:34
8
This post received
KUDOS
14
This post was
BOOKMARKED

Solving Inequalities


I was going through the posts on inequalities and found that many good concepts are explained here, but still people do have trouble solving the question using these concept.
In these posts, there were quadratic equations, curves, graphs and other mathematical stuff. With this post, I am trying to provide a simple method to solve such questions quickly. I won't be writing the concepts behind it.
Remember this is the same OLD concept, it's just presented differently.

Case 1: Multiplication


for example: (x-1)(x-2)(x-3)(x-7) \leq 0

To check the intervals in which this inequality holds true, we need to pick only one value from the number line.
Lets say x = 10, then (9)(8)(7)(3) > 0, in every alternate interval the sign would be + for the above expression

---(+)-----1---(-)---2---(+)---3-----------(-)----------7----(+)------

Thus, inequality would hold true in the intervals:
1 \leq x \leq 2
3 \leq x \leq 7,

Note that intervals are inclusive of 3 & 7


Case 2: Division


In case of division:
\frac{(x-1)(x-2)}{(x-3)(x-7)} \leq 0
Using the same approach as above;
1 \leq x \leq 2
3 < x < 7, (x\neq3, 7)

Since (x-3)(x-7) is in denominator, its value can't be 0.


Following things to be kept in mind while using above method:
1. Cofficient of x should be positive: for ex - (x-a)(b-x)>0, can be written as (x-a)(x-b)<0
2. Even powers: for ex - (x-9)^2(x+3) \geq 0, (x-9)^2 is always greater than 0, so, it should be only considered to check the equality (=0)
3. Odd powers: (x-a)^3(x-b)^5>0, will be same as (x-a)(x-b)>0
4. Cancelling the common terms:
    for ex - \frac {(x^2+x-6)(x-11)}{(x+3)} >0, it can be simplified as (x-2)(x-11)>0
    or, ---(+)-----2---(-)-------------11----(+)------
    thus x <2 or x>11, but since at x = -3 (in the original expression), we get undefined form, so, x

    \neq -3


A question for you:
For what values of x, does the following inequality holds true?
(x-a)(x-b)...(x-n)...(x-z) \geq 0, where {a, b, c,...} are integers.
[Reveal] Spoiler: Solution
The expression has (x-x), thus, it is always 0=0 for every value of x.


Reference post:
http://gmatclub.com/forum/inequalities-trick-91482.html

PS: I hope you find this post useful, please provide feedback to improve the quality of the post.

Thanks,
_________________

My posts: Solving Inequalities, Solving Simultaneous equations, Divisibility Rules

My story: 640 What a blunder!

Vocabulary resource: EdPrep

Facebook page: fb.com/EdPrep


Last edited by cyberjadugar on 15 May 2013, 23:24, edited 1 time in total.
Kaplan Promo CodeKnewton GMAT Discount CodesManhattan GMAT Discount Codes
1 KUDOS received
Current Student
User avatar
Affiliations: UWC
Joined: 09 May 2012
Posts: 399
Location: India
GMAT 1: 620 Q42 V33
GMAT 2: 680 Q44 V38
GPA: 3.43
WE: Engineering (Entertainment and Sports)
Followers: 23

Kudos [?]: 240 [1] , given: 100

GMAT Tests User Reviews Badge
Re: Solving Inequalities [#permalink] New post 19 Jun 2012, 04:21
1
This post received
KUDOS
This one is a really useful trick cyberjadugar. Kudos to you and gurpreetsingh.

Example for practice from OG13 PS229:

How many of the integers that satisfy the inequality \frac{{(x+2)(x+3)}}{{x-2}}x\geq{0} are less than 5?

A 1
B 2
C 3
D 4
E 5
Senior Manager
Senior Manager
User avatar
Joined: 28 Mar 2012
Posts: 285
Concentration: Entrepreneurship
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
Followers: 16

Kudos [?]: 157 [0], given: 23

GMAT ToolKit User GMAT Tests User
Re: Solving Inequalities [#permalink] New post 19 Jun 2012, 04:59
macjas wrote:
This one is a really useful trick cyberjadugar. Kudos to you and gurpreetsingh.

Example for practice from OG13 PS229:

How many of the integers that satisfy the inequality \frac{{(x+2)(x+3)}}{{x-2}}x\geq{0} are less than 5?

A 1
B 2
C 3
D 4
E 5

Hi,

Check here:
http://gmatclub.com/forum/how-many-of-the-integers-that-satisfy-the-inequality-x-2-x-134194.html#p1094729
You can get the range for x using the mentioned method.

Regards,
_________________

My posts: Solving Inequalities, Solving Simultaneous equations, Divisibility Rules

My story: 640 What a blunder!

Vocabulary resource: EdPrep

Facebook page: fb.com/EdPrep

Current Student
User avatar
Affiliations: UWC
Joined: 09 May 2012
Posts: 399
Location: India
GMAT 1: 620 Q42 V33
GMAT 2: 680 Q44 V38
GPA: 3.43
WE: Engineering (Entertainment and Sports)
Followers: 23

Kudos [?]: 240 [0], given: 100

GMAT Tests User Reviews Badge
Re: Solving Inequalities [#permalink] New post 19 Jun 2012, 05:09
cyberjadugar wrote:
macjas wrote:
This one is a really useful trick cyberjadugar. Kudos to you and gurpreetsingh.

Example for practice from OG13 PS229:

How many of the integers that satisfy the inequality \frac{{(x+2)(x+3)}}{{x-2}}x\geq{0} are less than 5?

A 1
B 2
C 3
D 4
E 5

Hi,

Check here:
http://gmatclub.com/forum/how-many-of-the-integers-that-satisfy-the-inequality-x-2-x-134194.html#p1094729
You can get the range for x using the mentioned method.

Regards,


haha I know; I started that thread. I reposted this problem to link a real GMAT question to this technique to add value to this thread...
Current Student
User avatar
Affiliations: UWC
Joined: 09 May 2012
Posts: 399
Location: India
GMAT 1: 620 Q42 V33
GMAT 2: 680 Q44 V38
GPA: 3.43
WE: Engineering (Entertainment and Sports)
Followers: 23

Kudos [?]: 240 [0], given: 100

GMAT Tests User Reviews Badge
Re: Solving Inequalities [#permalink] New post 20 Jun 2012, 00:24
So that problem that you posted, let me give it a try:

A question for you:
For what values of x, does the following inequality holds true?
(x-a)(x-b)...(x-n)...(x-z) \geq 0, where {a, b, c,...} are integers.


Roots are: a,b,c,d...z
The condition will hold true for these intervals:
x\geq{z}
x =x
{x}\leq{x}\leq{y}
{v}\leq{x\leq{w}
{s}\leq{x\leq{t}
{p}\leq{x\leq{t}
{m}\leq{x\leq{n}
{j}\leq{x\leq{k}
{g}\leq{x\leq{h}
{d}\leq{x\leq{e}
{a}\leq{x\leq{b}

Is this correct??
Senior Manager
Senior Manager
User avatar
Joined: 28 Mar 2012
Posts: 285
Concentration: Entrepreneurship
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
Followers: 16

Kudos [?]: 157 [0], given: 23

GMAT ToolKit User GMAT Tests User
Re: Solving Inequalities [#permalink] New post 20 Jun 2012, 00:33
macjas wrote:
So that problem that you posted, let me give it a try:

A question for you:
For what values of x, does the following inequality holds true?
(x-a)(x-b)...(x-n)...(x-z) \geq 0, where {a, b, c,...} are integers.


Roots are: a,b,c,d...z
The condition will hold true for these intervals:
x\geq{z}
x =x
{x}\leq{x}\leq{y}
{v}\leq{x\leq{w}
{s}\leq{x\leq{t}
{p}\leq{x\leq{t}
{m}\leq{x\leq{n}
{j}\leq{x\leq{k}
{g}\leq{x\leq{h}
{d}\leq{x\leq{e}
{a}\leq{x\leq{b}

Is this correct??

Hi,

You have identified everything, but give a close tought again. The answer is pretty much straight forward. :wink:

Regards,
_________________

My posts: Solving Inequalities, Solving Simultaneous equations, Divisibility Rules

My story: 640 What a blunder!

Vocabulary resource: EdPrep

Facebook page: fb.com/EdPrep

Current Student
User avatar
Affiliations: UWC
Joined: 09 May 2012
Posts: 399
Location: India
GMAT 1: 620 Q42 V33
GMAT 2: 680 Q44 V38
GPA: 3.43
WE: Engineering (Entertainment and Sports)
Followers: 23

Kudos [?]: 240 [0], given: 100

GMAT Tests User Reviews Badge
Re: Solving Inequalities [#permalink] New post 20 Jun 2012, 00:48
cyberjadugar wrote:
macjas wrote:
So that problem that you posted, let me give it a try:

A question for you:
For what values of x, does the following inequality holds true?
(x-a)(x-b)...(x-n)...(x-z) \geq 0, where {a, b, c,...} are integers.


Roots are: a,b,c,d...z
The condition will hold true for these intervals:
x\geq{z}
x =x
{x}\leq{x}\leq{y}
{v}\leq{x\leq{w}
{s}\leq{x\leq{t}
{p}\leq{x\leq{t}
{m}\leq{x\leq{n}
{j}\leq{x\leq{k}
{g}\leq{x\leq{h}
{d}\leq{x\leq{e}
{a}\leq{x\leq{b}

Is this correct??

Hi,

You have identified everything, but give a close tought again. The answer is pretty much straight forward. :wink:

Regards,


I have no idea... what am I missing here??
Current Student
User avatar
Affiliations: UWC
Joined: 09 May 2012
Posts: 399
Location: India
GMAT 1: 620 Q42 V33
GMAT 2: 680 Q44 V38
GPA: 3.43
WE: Engineering (Entertainment and Sports)
Followers: 23

Kudos [?]: 240 [0], given: 100

GMAT Tests User Reviews Badge
Re: Solving Inequalities [#permalink] New post 21 Jun 2012, 10:08
hey cj, looking forward to your Solving Set theory post...
Manager
Manager
avatar
Joined: 02 Jun 2011
Posts: 160
Followers: 1

Kudos [?]: 23 [0], given: 11

Re: Solving Inequalities [#permalink] New post 25 Jun 2012, 04:05
nice one - and a great link .. inequalities :(

kudos to cyberjadugar as well as gurpreet singh, veritas karishma...

is the answer to macjas quest is - 4 ( -2, -3, 3,4) -? kindly correct with explaination.

and to the solution to cyberjadugar - is it as follows?
x<=a = +ve
a>=x>=b = -ve
b>=x>=n = +ve
n>=x>=z = -ve
x>=z = +ve

i may have done above wrong. pls do correct.
and if the above is right , how the whole thing can be put together?
like is it possible to write - z<=x<=a ot like z<=x<=a is +ve.
Senior Manager
Senior Manager
User avatar
Joined: 15 Sep 2009
Posts: 271
GMAT 1: 750 Q V
Followers: 8

Kudos [?]: 53 [0], given: 6

Re: Solving Inequalities [#permalink] New post 25 Jun 2012, 07:38
-3,-2,3,4

Therefore, there are 4 integers less than 5 that satisfy the inequality.

Cheers,
Der alte Fritz.
_________________

+1 Kudos me - I'm half Irish, half Prussian.

Intern
Intern
avatar
Joined: 07 Apr 2010
Posts: 6
Concentration: Entrepreneurship, Technology
GMAT 1: 740 Q49 V41
GPA: 3.84
WE: Research (Computer Hardware)
Followers: 0

Kudos [?]: 5 [0], given: 0

Re: Solving Inequalities [#permalink] New post 02 Nov 2012, 13:36
Edit: The 'x' before the inequality caused the confusion. I checked and that 'x' doe not exist.

What about '0' and '-4', '-5' '-6'...?
0<5, -4<5 ...


macjas wrote:
This one is a really useful trick cyberjadugar. Kudos to you and gurpreetsingh.

Example for practice from OG13 PS229:

How many of the integers that satisfy the inequality \frac{{(x+2)(x+3)}}{{x-2}}x\geq{0} are less than 5?

A 1
B 2
C 3
D 4
E 5
OldFritz wrote:
-3,-2,3,4

Therefore, there are 4 integers less than 5 that satisfy the inequality.

Cheers,
Der alte Fritz.
Intern
Intern
avatar
Status: Fighting to kill GMAT
Joined: 23 Sep 2012
Posts: 33
Location: United States
Concentration: International Business, General Management
Schools: Duke '16
GPA: 3.8
WE: General Management (Other)
Followers: 0

Kudos [?]: 11 [0], given: 233

Re: Solving Inequalities [#permalink] New post 05 Nov 2012, 05:23
gpk wrote:
Edit: The 'x' before the inequality caused the confusion. I checked and that 'x' doe not exist.

What about '0' and '-4', '-5' '-6'...?
0<5, -4<5 ...


macjas wrote:
This one is a really useful trick cyberjadugar. Kudos to you and gurpreetsingh.

Example for practice from OG13 PS229:

How many of the integers that satisfy the inequality \frac{{(x+2)(x+3)}}{{x-2}}x\geq{0} are less than 5?

A 1
B 2
C 3
D 4
E 5
OldFritz wrote:
-3,-2,3,4

Therefore, there are 4 integers less than 5 that satisfy the inequality.

Cheers,
Der alte Fritz.


Yes, the extra 'x' is a typo. Of course, none of the options match if that x was still present in the inequality.
_________________

Kudos is the currency of appreciation.



You can have anything you want if you want it badly enough. You can be anything you want to be and do anything you set out to accomplish, if you hold to that desire with the singleness of purpose. ~William Adams

Many of life's failures are people who did not realize how close to success they were when they gave up. ~Thomas A. Edison

Wir müssen wissen, Wir werden wissen. (We must know, we will know.) ~Hilbert

Intern
Intern
avatar
Status: Fighting to kill GMAT
Joined: 23 Sep 2012
Posts: 33
Location: United States
Concentration: International Business, General Management
Schools: Duke '16
GPA: 3.8
WE: General Management (Other)
Followers: 0

Kudos [?]: 11 [0], given: 233

Re: Solving Inequalities [#permalink] New post 05 Nov 2012, 05:33
cyberjadugar wrote:
2. Even powers: for ex - (x-9)^2(x+3) \geq 0, (x-9)^2 is always greater than 0, so, it should be only considered to check the equality (=0)
3. Odd powers: (x-a)^3(x-b)^5>0, will be same as (x-a)(x-b)>0


Hello cyberjadugar,

Could you illustrate (2) and (3) with examples. Though (3) is kind of clear, I do not understand what exactly you mean in (2).
_________________

Kudos is the currency of appreciation.



You can have anything you want if you want it badly enough. You can be anything you want to be and do anything you set out to accomplish, if you hold to that desire with the singleness of purpose. ~William Adams

Many of life's failures are people who did not realize how close to success they were when they gave up. ~Thomas A. Edison

Wir müssen wissen, Wir werden wissen. (We must know, we will know.) ~Hilbert

Manager
Manager
avatar
Joined: 23 Jan 2013
Posts: 91
Concentration: Technology, Other
Followers: 1

Kudos [?]: 9 [0], given: 18

GMAT ToolKit User CAT Tests
Re: Solving Inequalities [#permalink] New post 20 Apr 2013, 19:16
closed271 wrote:
cyberjadugar wrote:
2. Even powers: for ex - (x-9)^2(x+3) \geq 0, (x-9)^2 is always greater than 0, so, it should be only considered to check the equality (=0)
3. Odd powers: (x-a)^3(x-b)^5>0, will be same as (x-a)(x-b)>0


Hello cyberjadugar,

Could you illustrate (2) and (3) with examples. Though (3) is kind of clear, I do not understand what exactly you mean in (2).




Could some one please explain point 2 ??
Senior Manager
Senior Manager
User avatar
Joined: 28 Mar 2012
Posts: 285
Concentration: Entrepreneurship
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
Followers: 16

Kudos [?]: 157 [0], given: 23

GMAT ToolKit User GMAT Tests User
Re: Solving Inequalities [#permalink] New post 15 May 2013, 22:55
shelrod007 wrote:
closed271 wrote:
cyberjadugar wrote:
2. Even powers: for ex - (x-9)^2(x+3) \geq 0, (x-9)^2 is always greater than 0, so, it should be only considered to check the equality (=0)
3. Odd powers: (x-a)^3(x-b)^5>0, will be same as (x-a)(x-b)>0


Hello cyberjadugar,

Could you illustrate (2) and (3) with examples. Though (3) is kind of clear, I do not understand what exactly you mean in (2).




Could some one please explain point 2 ??

Hi,

Sorry for the late reply.

For even powers, such as (x-9)^2, if you check for various values of x,
for example,
x = 1, (x-9)^2 = 64(>0)
x=-1, (x-9)^2 = 100(>0)
x =10, (x-9)^2=1(>0)
but for x = 9, (x-9)^2=0
so, for every value of x, the even powers will always be greater or equal to 0, i.e. the sign of the expression doesn't change from positive to negative.

Let me know if you need further clarification.

Regards,
_________________

My posts: Solving Inequalities, Solving Simultaneous equations, Divisibility Rules

My story: 640 What a blunder!

Vocabulary resource: EdPrep

Facebook page: fb.com/EdPrep

Manager
Manager
avatar
Status: K... M. G...
Joined: 22 Oct 2012
Posts: 51
Concentration: General Management, Leadership
GMAT Date: 08-27-2013
GPA: 3.8
Followers: 0

Kudos [?]: 6 [0], given: 118

Re: Solving Inequalities [#permalink] New post 24 Jul 2013, 06:13
cyberjadugar wrote:

Solving Inequalities


I was going through the posts on inequalities and found that many good concepts are explained here, but still people do have trouble solving the question using these concept.
In these posts, there were quadratic equations, curves, graphs and other mathematical stuff. With this post, I am trying to provide a simple method to solve such questions quickly. I won't be writing the concepts behind it.
Remember this is the same OLD concept, it's just presented differently.

Case 1: Multiplication


for example: (x-1)(x-2)(x-3)(x-7) \leq 0

To check the intervals in which this inequality holds true, we need to pick only one value from the number line.
Lets say x = 10, then (9)(8)(7)(3) > 0, in every alternate interval the sign would be + for the above expression

---(+)-----1---(-)---2---(+)---3-----------(-)----------7----(+)------

Thus, inequality would hold true in the intervals:
1 \leq x \leq 2
3 \leq x \leq 7,

Note that intervals are inclusive of 3 & 7


Case 2: Division


In case of division:
\frac{(x-1)(x-2)}{(x-3)(x-7)} \leq 0
Using the same approach as above;
1 \leq x \leq 2
3 < x < 7, (x\neq3, 7)

Since (x-3)(x-7) is in denominator, its value can't be 0.


Following things to be kept in mind while using above method:
1. Cofficient of x should be positive: for ex - (x-a)(b-x)>0, can be written as (x-a)(x-b)<0
2. Even powers: for ex - (x-9)^2(x+3) \geq 0, (x-9)^2 is always greater than 0, so, it should be only considered to check the equality (=0)
3. Odd powers: (x-a)^3(x-b)^5>0, will be same as (x-a)(x-b)>0
4. Cancelling the common terms:
    for ex - \frac {(x^2+x-6)(x-11)}{(x+3)} >0, it can be simplified as (x-2)(x-11)>0
    or, ---(+)-----2---(-)-------------11----(+)------
    thus x <2 or x>11, but since at x = -3 (in the original expression), we get undefined form, so, x

    \neq -3


A question for you:
For what values of x, does the following inequality holds true?
(x-a)(x-b)...(x-n)...(x-z) \geq 0, where {a, b, c,...} are integers.
[Reveal] Spoiler: Solution
The expression has (x-x), thus, it is always 0=0 for every value of x.


Reference post:
http://gmatclub.com/forum/inequalities-trick-91482.html

PS: I hope you find this post useful, please provide feedback to improve the quality of the post.

Thanks,







Hi,

I have question with the below one,

[list]for ex - \frac {(x^2+x-6)(x-11)}{(x+3)} >0, it can be simplified as (x-2)(x-11)>0
or, ---(+)-----2---(-)-------------11----(+)------
thus x <2 or x>11, but since at x = -3 (in the original expression), we get undefined form, so, [m]x

using the plot of + ,- , how to identify x<2 or x>2 . I have a impression like if > is the used then it should be always x>2 & x>11 but the answer u have mentioned again confused me. Please help
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 112

Kudos [?]: 1148 [0], given: 219

GMAT ToolKit User GMAT Tests User
Re: Solving Inequalities [#permalink] New post 24 Jul 2013, 06:17
Hi there,

I wrote a post about how to choose the correct interval(s): tips-and-tricks-inequalities-150873.html#p1211920.

Hope it helps
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2402
Followers: 196

Kudos [?]: 38 [0], given: 0

Premium Member
Re: Solving Inequalities [#permalink] New post 28 Jul 2014, 07:30
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: Solving Inequalities   [#permalink] 28 Jul 2014, 07:30
    Similar topics Author Replies Last post
Similar
Topics:
6 Experts publish their posts in the topic Solve the inequality SathyaNIT 9 17 May 2013, 18:57
Problem Solving - Inequality EnterMatrix 2 25 Jul 2010, 10:46
Problem Solving - Inequality EnterMatrix 1 25 Jul 2010, 10:43
4 Solve the Inequality crejoc 14 03 Aug 2009, 05:48
Inequality question - pls solve this with exp. hemamalinidr 3 29 Jun 2006, 21:40
Display posts from previous: Sort by

Solving Inequalities

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.