Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

62% (02:04) correct
37% (02:24) wrong based on 8 sessions

Post timing if possible.

In March, Kurt ran an average of 1.5 miles an hour. If by June he had increased his pace by 10 seconds per mile, then which of the following expresses the number of hours it would take Kurt to complete one mile in June?

The problem has two conversions to watch out for; first, it gives 1.5 miles in March but 1 mile in June second, it adds 10 seconds to his mile per hour rate. The order in which you deal with these are up to you, but they must be dealt with. First let’s deal with the 1.5 mile to 1 mile problem. Initially, he runs 1.5 miles per hour, which is the same as saying that he does 3 halves of a mile in 60 minutes, thus each half must take 20 minutes. Now we know that in March it took him 40 minutes to run a mile. Let’s now convert those minutes to seconds, 40 minutes = 2400 seconds. If by June he increased his pace by 10 seconds, that means it would take him less time to complete the mile, so in June a mile would take him 2390 seconds. Now we have the time it would take him to do a mile in June, so the last step is to convert 2390 seconds to hours. To do so we must divide 2390 by 60 to get minutes and then divide it again by 60 to convert minutes into hours.

In March, Kurt ran an average of 1.5 miles an hour. If by June he had increased his pace by 10 seconds per mile, then which of the following expresses the number of hours it would take Kurt to complete one mile in June?

Answer choices for the question is given wrong in Princeton Review. But OE explains the correct answer choice which is not given in answer choices. Anyway, I have rectified answer choices.
_________________

My dad once said to me: Son, nothing succeeds like success.

In March, Kurt ran an average of 1.5 miles an hour. If by June he had increased his pace by 10 seconds per mile, then which of the following expresses the number of hours it would take Kurt to complete one mile in June?