Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Square ABCD is the base of the cube while square EFGH is the [#permalink]
26 Nov 2007, 23:24

1

This post received KUDOS

9

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

55% (hard)

Question Stats:

65% (03:24) correct
35% (01:55) wrong based on 178 sessions

Square ABCD is the base of the cube while square EFGH is the cube's top facet such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

A. \(\frac{1}{\sqrt{2}}\) B. 1 C. \(\sqrt{2}\) D. \(\sqrt{3}\) E. \(2\sqrt{3}\)

Square ABCD is the base of the cube while square EFGH is the cube's top face such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

1/sqrt2 1 sqrt2 sqrt3 2sqrt3

Please explain your answer.

distance from mid point of AB to AD = sqrt [(1/sqrt2)^2+(1/sqrt2)^2] = 1

the distance between the midpoint of edge AB and the midpoint of edge EH = sqrt [1^2+(sqrt2)^2] = sqrt3.

Square ABCD is the base of the cube while square EFGH is the cube's top face such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

1/sqrt2 1 sqrt2 sqrt3 2sqrt3

Please explain your answer.

sqrt 3.

let midpoint of EH = M
let midpoint of AB = N
Drop perpendicular from M to side AD on F
AN = (sqrt 2)/2
AF = (sqrt 2)/2
FN = [(sqrt 2)/2]^2 + [(sqrt 2)/2]^2 = 1
MN^2 = 1^2 + (sqrt 2)^2 = 3
MN = sqrt 3

Re: Square ABCD is the base of the cube while square EFGH is the [#permalink]
29 May 2014, 04:46

I used deluxe pythag to solve....

We know that the area of the square is 2, therefore the side = sqrt2 or 2^1/2. We know the midpoints are (2^1/2)/2.

So in reality, we are just finding the main diagonal of a rectangular solid with lengths (2^1/2)/2, (2^1/2)/2, and (2^1/2); apply deluxe pythag theorum.

Find x - Main diagonal ((2^1/2)/2)^2 + ((2^1/2)/2)^2 + (2^1/2)^2 = x^2 (2/2)+(2/2)+2=x^2 1/2+1/2+2=x^2 3=x^2 3^1/2=x

Re: Square ABCD is the base of the cube while square EFGH is the [#permalink]
29 May 2014, 05:45

Expert's post

1

This post was BOOKMARKED

Square ABCD is the base of the cube while square EFGH is the cube's top facet such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

A. \(\frac{1}{\sqrt{2}}\) B. 1 C. \(\sqrt{2}\) D. \(\sqrt{3}\) E. \(2\sqrt{3}\)

Look at the diagram below:

Attachment:

Cube.png [ 14.44 KiB | Viewed 1807 times ]

Notice that Z is the midpoint of AD. We need to find the length of line segment XY.

Now, since the area of ABCD is 2 then each edge of the cube equals to \(\sqrt{2}\).

Re: Square ABCD is the base of the cube while square EFGH is the [#permalink]
16 Jun 2014, 05:10

Why angle Z is the right angle?

Bunuel wrote:

Square ABCD is the base of the cube while square EFGH is the cube's top facet such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

A. \(\frac{1}{\sqrt{2}}\) B. 1 C. \(\sqrt{2}\) D. \(\sqrt{3}\) E. \(2\sqrt{3}\)

Look at the diagram below:

Attachment:

Cube.png

Notice that Z is the midpoint of AD. We need to find the length of line segment XY.

Now, since the area of ABCD is 2 then each edge of the cube equals to \(\sqrt{2}\).

Re: Square ABCD is the base of the cube while square EFGH is the [#permalink]
16 Jun 2014, 05:42

Expert's post

amar13 wrote:

Why angle Z is the right angle?

Bunuel wrote:

Square ABCD is the base of the cube while square EFGH is the cube's top facet such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

A. \(\frac{1}{\sqrt{2}}\) B. 1 C. \(\sqrt{2}\) D. \(\sqrt{3}\) E. \(2\sqrt{3}\)

Look at the diagram below:

Attachment:

Cube.png

Notice that Z is the midpoint of AD. We need to find the length of line segment XY.

Now, since the area of ABCD is 2 then each edge of the cube equals to \(\sqrt{2}\).

Re: Square ABCD is the base of the cube while square EFGH is the [#permalink]
28 Jun 2015, 10:13

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Square ABCD is the base of the cube while square EFGH is the [#permalink]
01 Jul 2015, 04:52

Bunuel wrote:

amar13 wrote:

Why angle Z is the right angle?

Bunuel wrote:

Square ABCD is the base of the cube while square EFGH is the cube's top facet such that point E is above point A, point F is above point B etc. What is the distance between the midpoint of edge AB and the midpoint of edge EH if the area of square ABCD is 2?

A. \(\frac{1}{\sqrt{2}}\) B. 1 C. \(\sqrt{2}\) D. \(\sqrt{3}\) E. \(2\sqrt{3}\)

Look at the diagram below:

Attachment:

Cube.png

Notice that Z is the midpoint of AD. We need to find the length of line segment XY.

Now, since the area of ABCD is 2 then each edge of the cube equals to \(\sqrt{2}\).

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

I’ll start off with a quote from another blog post I’ve written : “not all great communicators are great leaders, but all great leaders are great communicators.” Being...