Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

0% (00:00) correct
0% (00:00) wrong based on 0 sessions

Kim bought a total of $2.65 worth of postage stamps in four denominations. If she bought an equal number of 5-cent and 25-cent stamps and twice as many 10-cent stamps as 5-cent stamps, what is the least number of 1-cent stamps she could have bought ?
(A) 5
(B) 10
(C) 15
(D) 20
(E) 25

Let X be the number of 5cents stamps.
We know though that number of 5cents stamps = number of 10cents stamps.
Then, we know that .05X + .25X + .10(2X) = .50X
2.65 / .5 = 5 remainder .15. Therefore least number of 1cent stamp is C)15 _________________

Minimum no of each denomination stamps he can buy is 1
Let us say he buys 1 5 cent stamp = 5c
then he buys 1 25 cent stamp as well = 25c
then he also buys 2 10 cent stamps = 20c

Total = 50c for three different stamps
We know that he spent $2.65 or 265cents on these stamps.
Since 265 is not divisible by 50 we chose the next highest number less than 265. That number is 250. So maximum he can spend 250 cents buying 5, 10 and 25 cent stamps.
265-250 = 15 are the least number of 1 cent stamps he can buy.

Vivek's equation is
50X + Y = 265 = 5*50 + 15
so he equates similar terms on both the sides
50X = 5*50
and Y = 15
This can be done in case of simple equations.

Perhaps known as the toughest term in the entire 2 years of Rotman MBA has ended (of course I heard it gets harder, but nonetheless). It started with...

For my Cambridge essay I have to write down by short and long term career objectives as a part of the personal statement. Easy enough I said, done it...