Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

T is a set of y integers, where 0 < y < 7. If the average of Set T is the positive integer x, which of the following could NOT be the median of Set T?

a) 0 b) x c) –x d) (1/3)y e) (2/7)y

thanks in advance

Its E, which is neither an integer nor a multiple of 0.5. Since the set T's elements are integers, median should be either an integer or a multiple of 0.5.

Hi Gmat tiger, You are right that the median should be either an integer or a multiple of 0.5 ( since the number of integers can be even) But then, 1/3 is also not an integer and not a multiple of 0.5 !! Couldnt get this

GMAT TIGER wrote:

Zaur wrote:

T is a set of y integers, where 0 < y < 7. If the average of Set T is the positive integer x, which of the following could NOT be the median of Set T?

a) 0 b) x c) –x d) (1/3)y e) (2/7)y

thanks in advance

Its E, which is neither an integer nor a multiple of 0.5. Since the set T's elements are integers, median should be either an integer or a multiple of 0.5.

Hi Gmat tiger, You are right that the median should be either an integer or a multiple of 0.5 ( since the number of integers can be even) But then, 1/3 is also not an integer and not a multiple of 0.5 !! Couldnt get this

GMAT TIGER wrote:

Zaur wrote:

T is a set of y integers, where 0 < y < 7. If the average of Set T is the positive integer x, which of the following could NOT be the median of Set T?

a) 0 b) x c) –x d) (1/3)y e) (2/7)y

thanks in advance

Its E, which is neither an integer nor a multiple of 0.5. Since the set T's elements are integers, median should be either an integer or a multiple of 0.5.

y could be 2, 3, 4, 5, or 6. If y = either 3 or 6, y/3 is an integer.

Re: PS - set of intergers [#permalink]
30 Apr 2010, 22:29

ksharma12 wrote:

Can someone break down all the choices as to why they can be median?

Rather than think about whether or not they can be the median, think about whether or not they could be an integer or a multiple of 0.5.

a) 0 integer b) x could be an integer, all we know is that it's the average c) –x same as b d) (1/3)y could be an integer if y=3 or y=6 e) (2/7)y cannot be an integer or multiple of 0.5, as y is 1,2,3,4,5 or 6. Sufficient enough to answer the question

Re: PS - set of intergers [#permalink]
25 Sep 2010, 08:47

How C) -x could be the median? Set consists of elements from 1 to 6, the average x is positive, the median is negative which is impossible due to the range from 1 to 6.

Re: PS - set of intergers [#permalink]
25 Sep 2010, 09:28

8

This post received KUDOS

Expert's post

Kronax wrote:

How C) -x could be the median? Set consists of elements from 1 to 6, the average x is positive, the median is negative which is impossible due to the range from 1 to 6.

Phrase "T is a set of y integers, where 0 < y < 7" doesn't mean that T consist of elements from 1 to 6, it means that number of elements in T is from 1 to 6.

T is a set of y integers, where 0 < y < 7. If the average of Set T is the positive integer x, which of the following could NOT be the median of Set T?

A. 0 --> if T=\{0, 0, 3\} then mean=x=1 and median=0;

B. x --> if T=\{3\} then mean=x=3 and median=x=3;

C. -x --> if T=\{-1, -1, 5\} then mean=x=1 and median=-x=-1;

D. \frac{1}{3}y --> if T=\{1, 1, 1\} then mean=x=1, # \ of \ elements=y=3 and median=\frac{1}{3}y=1;

E. \frac{2}{7}y --> now, as T is a set of integers then the median is either a middle term, so integer OR the average of two middle terms so \frac{integer}{2}, but as y is an integer from 1 to 6 then \frac{2}{7}y is neither an integer nor \frac{integer}{2}. So \frac{2}{7}y could not be the median.

Re: T is a set of y integers, where 0 < y < 7. If the average of [#permalink]
17 Oct 2012, 02:04

It's not always the case that E holds true. If T contains only one element, let's say 3. The mean is 3. The median OUGHT to be 3, never -3. So C is right. Can anyone help me out?

Re: T is a set of y integers, where 0 < y < 7. If the average of [#permalink]
17 Oct 2012, 04:02

Ousmane wrote:

It's not always the case that E holds true. If T contains only one element, let's say 3. The mean is 3. The median OUGHT to be 3, never -3. So C is right. Can anyone help me out?

The question is "which of the following could NOT be the median of Set T?" It means we have to find the option for which the given number can NEVER be the median of Set T.

So, -3 cannot be the median in your example, but there are many other cases when it can be. Set T contains integers, so negative numbers are not excluded.

2/7y can never be an integer when 0<y<7, while the median MUST be an integer, doesn't matter what is y and what are the numbers in the set.

_________________

PhD in Applied Mathematics Love GMAT Quant questions and running.