Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Terry holds 12 cards, each of which is red, white, green, or [#permalink]
11 Sep 2012, 03:52

Expert's post

13

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

70% (02:26) correct
30% (01:06) wrong based on 615 sessions

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

(1) The probability that the person will select a blue card is 1/3 (2) The probability that the person will select a red card is 1/6

Practice Questions Question: 39 Page: 278 Difficulty: 650

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
11 Sep 2012, 03:52

Expert's post

SOLUTION

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

The question asks whether \(\frac{red+white}{12}<\frac{1}{2}\) --> is \(red+white<6\). So, basically we need to know whether the number of red or white cards is less than 6.

(1) The probability that the person will select a blue card is 1/3 --> the number of blue cards is \(\frac{1}{3}*12=4\). Now, if there is only 1 green card then the number of red or white cards is 12-(4+1)=7 but if there are 3 green cards, then the number of red or white cards is 12-(4+3)=5. Not sufficient.

(2) The probability that the person will select a red card is 1/6 --> the number of red cards is \(\frac{1}{6}*12=2\). Not sufficient since we don't know the number of white cards.

(1)+(2) We know that there are 4 blue and 2 red cards, but we still don't know how many white cards are there: if there is only one, then the answer is YES but if there are 5 then the answer is NO. Not sufficient.

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
11 Sep 2012, 07:08

1

This post received KUDOS

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

(1) The probability that the person will select a blue card is 1/3 (2) The probability that the person will select a red card is 1/6

Can we determine if there are less than 6 total R or W's in the pack?

(1) There is 4 blues so 8 other cards. Therefore R+W <8, if 7 no, if 5, yes. INEFF

(2) There is 2 reds so 10 other cards. At least 1B and 1G so there is at most 8 other Whites. So at most 10/12 can be R+W, at least 3 INEFF

Together if we say number of R+W = x (i) says 2<x<8, (ii) says 1<x<10 so both together INEFF

Therefore E _________________

If you find my post helpful, please GIVE ME SOME KUDOS!

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
12 Sep 2012, 03:26

2

This post received KUDOS

Bunuel wrote:

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

(1) The probability that the person will select a blue card is 1/3 (2) The probability that the person will select a red card is 1/6

ST 1: Insufficient: P(blue) = 1/3, means there are 4 blue cards. So remaining are 8 cards, but don't know exact distribution. If we consider green =1, P(R+W) >1/2, but if we consider green = 4, P(R+W)<1/2. So insufficient.

ST2: Insufficient: P(Red) = 1/6, means there are 2 red cards. So remaining are 10, but don't know exact distribution. If we take white as 5 P(R+W)>1/2, If we take white 2, P(R+W)<1/2. So insufficient.

St 1 + St 2: Insufficient: Red =2, Blue = 4, Remaining 6 cards. If we take white 5, P(R+W) >1/2, But if we take White 2 P(R+W) <1/2. So insufficient.

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
12 Sep 2012, 12:38

2

This post received KUDOS

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white? (1) The probability that the person will select a blue card is 1/3 (2) The probability that the person will select a red card is 1/6

Trick- There is no need to calculate Probability as the question ask about the total no of Red & White cards. Basically the question can be restated as is the number of Red & White cards less than 6-- Red + White <6

Red+ White + Green + Blue = 12 Statement 1 - Probability of Blue = 1/3 = 4 blue cards are there ---->No info is given regarding Red & White----->Insufficient Statement 2 - Probability of Red = 1/6 = 2 red cards are there ---->No info is given regarding White cards----->Insufficient Statement 1 & 2 - Red+ White + Green + Blue = 12 2+ White + Green + 4 = 12 -----> White + Green = 6 Now green can be any number from 0 to 6 i.e. Red + white can be 2,3,4,5,6,7,8----> Insufficient

Answer E

Hope it helps _________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
14 Sep 2012, 05:51

1

This post received KUDOS

Expert's post

SOLUTION

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

The question asks whether \(\frac{red+white}{12}<\frac{1}{2}\) --> is \(red+white<6\). So, basically we need to know whether the number of red or white cards is less than 6.

(1) The probability that the person will select a blue card is 1/3 --> the number of blue cards is \(\frac{1}{3}*12=4\). Now, if there is only 1 green card then the number of red or white cards is 12-(4+1)=7 but if there are 3 green cards, then the number of red or white cards is 12-(4+3)=5. Not sufficient.

(2) The probability that the person will select a red card is 1/6 --> the number of red cards is \(\frac{1}{6}*12=2\). Not sufficient since we don't know the number of white cards.

(1)+(2) We know that there are 4 blue and 2 red cards, but we still don't know how many white cards are there: if there is only one, then the answer is YES but if there are 5 then the answer is NO. Not sufficient.

Answer: E.

Kudos points given to everyone with correct solution. Let me know if I missed someone. _________________

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
01 Feb 2013, 23:32

Bunuel wrote:

SOLUTION

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

The question asks whether \(\frac{red+white}{12}<\frac{1}{2}\) --> is \(red+white<6\). So, basically we need to know whether the number of red or white cards is less than 6.

(1) The probability that the person will select a blue card is 1/3 --> the number of blue cards is \(\frac{1}{3}*12=4\). Now, if there is only 1 green card then the number of red or white cards is 12-(4+1)=7 but if there are 3 green cards, then the number of red or white cards is 12-(4+3)=5. Not sufficient.

(2) The probability that the person will select a red card is 1/6 --> the number of red cards is \(\frac{1}{6}*12=2\). Not sufficient since we don't know the number of white cards.

(1)+(2) We know that there are 4 blue and 2 red cards, but we still don't know how many white cards are there: if there is only one, then the answer is YES but if there are 5 then the answer is NO. Not sufficient.

Answer: E.

but don't we know that between red and white there are 6 cards remaining so we get red + white < 6 so it will be a NO in all cases or have I missed something over here? _________________

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
01 Feb 2013, 23:48

1

This post received KUDOS

Expert's post

fozzzy wrote:

Bunuel wrote:

SOLUTION

Terry holds 12 cards, each of which is red, white, green, or blue. If a person is to select a card randomly from the cards Terry is holding, is the probability less than 1/2 that the card selected will be either red or white?

The question asks whether \(\frac{red+white}{12}<\frac{1}{2}\) --> is \(red+white<6\). So, basically we need to know whether the number of red or white cards is less than 6.

(1) The probability that the person will select a blue card is 1/3 --> the number of blue cards is \(\frac{1}{3}*12=4\). Now, if there is only 1 green card then the number of red or white cards is 12-(4+1)=7 but if there are 3 green cards, then the number of red or white cards is 12-(4+3)=5. Not sufficient.

(2) The probability that the person will select a red card is 1/6 --> the number of red cards is \(\frac{1}{6}*12=2\). Not sufficient since we don't know the number of white cards.

(1)+(2) We know that there are 4 blue and 2 red cards, but we still don't know how many white cards are there: if there is only one, then the answer is YES but if there are 5 then the answer is NO. Not sufficient.

Answer: E.

but don't we know that between red and white there are 6 cards remaining so we get red + white < 6 so it will be a NO in all cases or have I missed something over here?

Total = 12 _________ Blue = 4 Red = 2 White = ? Green = ?

If there is 1 white card and 5 green cards, then red+white=3<6. If there are 5 white cards and 1 green card, then red+white=6.

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
26 Jul 2014, 01:42

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
20 Jul 2015, 12:10

You will ultimately draw the same conclusion as the above methodologies, but my approach was slightly different:

Given: R + W + B + G = 12; prove that either (1) R + W <6 OR (2) B + G > 6.

(1) B = 1/3 * 12 = 4; thus, can simplify (2): (4) + G > 6? G > 2? Since we have not been provided any information pertaining to the value of G, insufficient.

(2) R = 1/6 * 12 = 2; thus, can simplify (1): (2) + W < 6? W < 4? Since we have not been provided any information pertaining to the value of W, insufficient.

Combo: Can we answer either from S1 G > 2 or from S2 W < 4? Using the information provided in both statements, (2) + W + (4) + G = 12; thus, we can deduce that W + G = 6.

Re: Terry holds 12 cards, each of which is red, white, green, or [#permalink]
02 Oct 2015, 00:45

I guess my approach was a little different.

S1) P(B) ~33% , that leaves roughly 67% for the rest of the probabilities. We're not given any information about R,G,W, so NS. If P(B)>50%, than this would have been sufficient. Since we don't need any information on the number or ratio of the cards to total, to answer if it's less the P(R or W)<50%. Not Sufficient

S2) P(R) ~ 17%. Same logic as S1 Applies, we can have a case where W makes up the majority of the cards, or has minimal representation. One leading to P(R or W)>50%, and the other P(R or W)<50%. Not Sufficient

S1 + S2: Known probability is 50%, leaving the other half to be shared by G or W. We can have a case where W is around 40%, leaving 10% for G, this would put P(R or W)>50%, or we can have a case where W is 10%, and G is 40%, which would mean P(R or W)<50%. Not Sufficient

gmatclubot

Re: Terry holds 12 cards, each of which is red, white, green, or
[#permalink]
02 Oct 2015, 00:45

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

A site for the partners of MBA candidates : A website we are creating for the better halves of the MBA candidates and the candidates themselves to know “the...

A week ago we were informed of our pre program preparation for Entrepreneurship and Finance… 2.5 months to go and we are already busy with our studies… Where...