Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
The average distance between the Sun and a certain planet is [#permalink]
15 Oct 2012, 03:36
Expert's post
5
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
25% (medium)
Question Stats:
69% (02:26) correct
31% (01:24) wrong based on 766 sessions
The average distance between the Sun and a certain planet is approximately 2.3 x 10^14 inches. Which of the following is closest to the average distance between the Sun and the planet, in kilometers? (1 kilometer is approximately 3.9 x 10^4 inches.)
(A) 7.1 x 10^8 (B) 5.9 x 10^9 (C) 1.6 x 10^10 (D) 1.6 x 10^11 (E) 5.9 x 10^11
Practice Questions Question: 65 Page: 161 Difficulty: 650
Re: The average distance between the Sun and a certain planet is [#permalink]
15 Oct 2012, 03:36
4
This post received KUDOS
Expert's post
4
This post was BOOKMARKED
SOLUTION
The average distance between the Sun and a certain planet is approximately 2.3 x 10^14 inches. Which of the following is closest to the average distance between the Sun and the planet, in kilometers? (1 kilometer is approximately 3.9 x 10^4 inches.)
(A) 7.1 x 10^8 (B) 5.9 x 10^9 (C) 1.6 x 10^10 (D) 1.6 x 10^11 (E) 5.9 x 10^11
The distance in kilometers would be: \(\frac{2.3*10^{14}}{3.9*10^4}\approx{\frac{23*10^{13}}{4*10^4}}\approx{6*10^9}\).
Re: The average distance between the Sun and a certain planet is [#permalink]
15 Oct 2012, 03:42
1
This post received KUDOS
Distance between the Sun and a certain planet in Inches = 2.3 x 10^14 1 kilometer = 3.9 x 10^4 inches Distance between the Sun and a certain planet in Km = (2.3 x 10^14)/ (3.9 x 10^4) = \((23/39) * 10^10\) = \((230/39) * 10^9\) = \(5.9 * 10^9\)
Answer B _________________
If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth-Game Theory
If you have any question regarding my post, kindly pm me or else I won't be able to reply
Re: The average distance between the Sun and a certain planet is [#permalink]
15 Oct 2012, 04:04
2
This post received KUDOS
Good question.
I took \(2.3 x 10^14\)and rounded down to \(2*10^14\), and took \(3.9*10^4\) and rounded up to \(4*10^4\).
Then, I did a unit conversion from Inches to Kilometers: \((2*10^14 Inches) * (\frac{1 Kilometer}{(4*10^4 Inches)})\)
Canceling out, we get \(\frac{(2*10^14 Inches)}{(4*10^4 Inches)}*1 Kilometer = 0.5*10^10 Kilometer\) or \(5*10^9 Kilometers\)
Since we rounded to begin with, we have to look for the solution that is both closest to our answer AND makes the most sense. In this case, the answer is
The average distance between the Sun and a certain planet is approximately 2.3 x 10^14 inches. Which of the following is closest to the average distance between the Sun and the planet, in kilometers? (1 kilometer is approximately 3.9 x 10^4 inches.)
(A) 7.1 x 10^8 (B) 5.9 x 10^9 (e) 1.6 x 10^10 (0) 1.6 x 10^11 (E) 5.9 x 10^11
Practice Questions Question: 65 Page: 161 Difficulty: 650
Each week we'll be posting several questions from The Official Guide for GMAT® Review, 13th Edition and then after couple of days we'll provide Official Answer (OA) to them along with a solution.
We'll be glad if you participate in development of this project: 1. Please provide your solutions to the questions; 2. Please vote for the best solutions by pressing Kudos button; 3. Please vote for the questions themselves by pressing Kudos button; 4. Please share your views on difficulty level of the questions, so that we have most precise evaluation.
Re: The average distance between the Sun and a certain planet is [#permalink]
19 Oct 2012, 03:56
1
This post received KUDOS
Expert's post
SOLUTION
The average distance between the Sun and a certain planet is approximately 2.3 x 10^14 inches. Which of the following is closest to the average distance between the Sun and the planet, in kilometers? (1 kilometer is approximately 3.9 x 10^4 inches.)
(A) 7.1 x 10^8 (B) 5.9 x 10^9 (C) 1.6 x 10^10 (D) 1.6 x 10^11 (E) 5.9 x 10^11
The distance in kilometers would be: \(\frac{2.3*10^{14}}{3.9*10^4}\approx{\frac{23*10^{13}}{4*10^4}}\approx{6*10^9}\).
Answer: B.
Kudos points given to everyone with correct solution. Let me know if I missed someone. _________________
Re: The average distance between the Sun and a certain planet is [#permalink]
22 Oct 2012, 08:04
Bro Bunuel, I wonder who you are and BB also declared you as the mystery man.. but you are doing an awesome job out here! thank you for all your help. My Question is
what if 6.1 x 10^9 is also one of the answer choices? what will your approach be in this case? _________________
hope is a good thing, maybe the best of things. And no good thing ever dies.
Re: The average distance between the Sun and a certain planet is [#permalink]
29 Jun 2014, 06:58
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: The average distance between the Sun and a certain planet is [#permalink]
11 Sep 2014, 00:27
Bunuel wrote:
The average distance between the Sun and a certain planet is approximately 2.3 x 10^14 inches. Which of the following is closest to the average distance between the Sun and the planet, in kilometers? (1 kilometer is approximately 3.9 x 10^4 inches.)
(A) 7.1 x 10^8 (B) 5.9 x 10^9 (C) 1.6 x 10^10 (D) 1.6 x 10^11 (E) 5.9 x 10^11
Practice Questions Question: 65 Page: 161 Difficulty: 650
Re: The average distance between the Sun and a certain planet is [#permalink]
29 Sep 2015, 05:15
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
The average distance between the Sun and a certain planet is [#permalink]
25 Oct 2015, 17:02
schelljo wrote:
Will someone please help me explain how you get from \(\frac{6}{10}*10^9\) to the answer.
Thanks!
You are given that the distance is \(2.3*10^{14}\) inches. You need to convert this into equivalent distance in kilometers with the relation given as 1 km = \(3.9*10^4\) inches
Thus, by unitary method, if \(3.9*10^4\) inches equals 1 km, then \(2.3*10^{14}\) inches will equal = \(\frac{2.3*10^{14}}{3.9*10^4}\)
You can now assume \(2.3 \approx 2.4\) and \(3.9 \approx 4.0\) to make both the numbers divisible by a common factor (4 in this case).
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...