Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The average of 4 consecutive odd numbers is half that of the [#permalink]
18 Apr 2010, 22:59

1

This post received KUDOS

2

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

45% (medium)

Question Stats:

60% (04:21) correct
40% (02:52) wrong based on 89 sessions

The average of 4 consecutive odd numbers is half that of the average of 5 consecutive even numbers. If the sum of these two average is 18, then the difference between the largest and smallest of these numbers is

Re: average problem [#permalink]
18 Apr 2010, 23:01

2

This post received KUDOS

gmat2012 wrote:

The average of 4 consecutive odd numbers is half that of the average of 5 consecutive even numbers. If the sum of these two average is 18, then the difference between the largest and smallest of these numbers is a.10 b.21 c.7 d.13 e.5

Let odd numbers be 2n-3, 2n-1, 2n + 1, 2n + 3. Average = 2n. Let even numbers be 2m- 4, 2m - 2, 2m, 2m + 2, 2m + 4. Average = 2m it is given that 2m = 4n Also 2n + 2m = 18 => 2n + 4n = 18. 6n = 18, 2n = 6 & 2m = 12. Largest = 16, smallest = 3. Difference = 16 - 3 = 13. hope this will help

Re: average problem [#permalink]
18 Apr 2010, 23:22

1

This post received KUDOS

There's a simple solution to this.

To find the average for a set of consecutive numbers, you add the first and last terms and divide by 2. In other words, the average is essentially center/pivot point of the series, whether or not it is a number in the series. (e.g. 1, 3, 5, 7 - the average is 4)

Now we look at the other information given. the average of the odd series is half the average of the even series and they sum up to 18. So let e be the average of the even series. We get 1.5e = 18 => e = 12

12 will be the middle term of the series and since there are 5, we now know the series look like this: (8, 10, 12, 14, 16) 12/2 = 6, the pivot point of the odd series, since there are 4, we know the series look like this: (3, 5, 7, 9)

Re: average problem [#permalink]
18 Apr 2010, 23:31

thanatoz wrote:

There's a simple solution to this.

To find the average for a set of consecutive numbers, you add the first and last terms and divide by 2. In other words, the average is essentially center/pivot point of the series, whether or not it is a number in the series. (e.g. 1, 3, 5, 7 - the average is 4)

Now we look at the other information given. the average of the odd series is half the average of the even series and they sum up to 18. So let e be the average of the even series. We get 1.5e = 18 => e = 12

12 will be the middle term of the series and since there are 5, we now know the series look like this: (8, 10, 12, 14, 16) 12/2 = 6, the pivot point of the odd series, since there are 4, we know the series look like this: (3, 5, 7, 9)

16 - 3 = 3.

QED.

good thought, i essentially solved using conventional method like assuming even and odd series numbers.. thanks for giving different prospective to the solution.

Re: average problem [#permalink]
17 Apr 2012, 00:35

5

This post received KUDOS

Expert's post

ENAFEX wrote:

Is there a different approach to this problem? I find the explanations above tough!!

The average of 4 consecutive odd numbers is half that of the average of 5 consecutive even numbers. If the sum of these two average is 18, then the difference between the largest and smallest of these numbers is A. 10 B. 21 C. 7 D. 13 E. 5

Some notes: The average of evenly spaced set with even number of terms (4 in our case) is the average of two middle terms. The average of evenly spaced set with odd number of terms (5 i our case) is the middle term.

Say the average of 4 consecutive odd numbers is x and the average of 5 consecutive even numbers is y.

Given: x=\frac{y}{2} and x+y=18 --> solve for x and y: x=6and y=12.

So, we have that the average of 4 consecutive odd numbers is 6, which means that those numbers are: {3, 5, 7, 9} (6 is the average of two middle terms);

Similarly we have that the average of 5 consecutive even numbers is 12, which means that those numbers are: {8, 10, 12, 14, 16} (12 is the middle term);

The difference between the largest and smallest of these numbers is 16-3=13.

Re: The average of 4 consecutive odd numbers is half that of the [#permalink]
23 Feb 2014, 02:45

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________